
1 Introduction

This study examines whether the Swift

language can be used as a first language for

teaching introductory programming and at the

same time to develop a real-world application for

students whose major is humanities, especially

media design and information design. The author

conducted two courses to learn programming for

first learners in Java and Swift, and analysed the

results.

1.1 Intention of teaching programming to

humanities majors in Swift

There is a large literature examining which

languages are used for introductory programming,

and how a language choice makes an impact on

learning. Studies (Davies et al. 2011; Murphy et al.

2017) reported that Java, C family, and Python are

the top three languages used in introductory

programming courses in higher education. On the

other hand, Swift is seldom used. In the surveys

by Simon et al. (2018), Swift was just one of 11

論　　文

First Programming Language for Humanities Majors

- A Comparison of Java and Swift

有　賀　妙　子
同志社女子大学・学芸学部・メディア創造学科・特別任用教授

ARIGA Taeko
Department of Media, Faculty of Liberal Arts,

Doshisha Women’s College of Liberal Arts, Special appointment professor

Abstract

While Java, C family, and Python are the top three languages used in introductory

programming courses in higher education, Swift is seldom used. This study considers whether

the Swift language can be used as a first language for introductory programming for

humanities majors. Learning programming is important for students regardless of major to

foster computational thinking and utilize programming for their study. Our department

conducted two courses to learn programming in Java and Swift for the creation of digital

contents and media studies. This paper presents the contents of both courses, results of

examinations, and students’ self-reflections. The result indicates that students can learn the

basic programming concepts in Swift in the same way as in Java, but the effect of the Swift

course for the GUI and OO parts was inferior to that of the Java course. The finding from

students’ self-reflections concerning programming shows that students perceived that their

confidence was enhanced in both the Swift and the Java courses.

Keywords: Introductory programming, Java, Swift, Programming for non-majors, Programming

language

1同志社女子大学　学術研究年報　第 72 巻　2021年

introductory course, it will be beneficial for

humanities majors who are interested in developing

iOS applications, but not so interested in matters

of computer science.

1.2 Two introductory programming courses in

Java and Swift for comparison

Our department targets the creation of digital

contents and media studies, and our students want

to learn programming for creating games,

interactive animations, and Web applications. We

have two courses to learn programming for first

learners: Introductory programming in Java (Prog A),

and Introductory iOS Development in Swift (Prog B).

The former course intends to teach basic computer

programming concepts: types, variables arrays,

loops, conditionals, class definitions in Java, and

development of applications with a graphical user

interface (GUI) by JavaFX. In the latter course,

students learn the same basics in Swift and

development of a simple application using Xcode,

an integrated development environment for iOS

applications. Both courses are designed for

students with no prior programming experience.

If our Swift course required knowledge of

programming as a prerequisite, it would narrow

students’ opportunities to learn development of iOS

applications, because a considerable proportion of

those students is not necessarily so eager to learn

programming itself, but is interested in iOS

development. We want to make iOS programming

courses open to them, and target learning both

fundamental concepts and development of

applications with GUI. This study will explore

whether learning of introductory programming in

Swift is achieved or not.

2 Literature review

2.1 Impact of different teaching languages

Many studies have been conducted for

exploring which language is suitable for

introductory programming courses in universities.

languages in the “other” category, none of which

was used in more than 2% of the surveyed courses.

Most courses using Swift are positioned as

intermediate or advanced courses in departments

of computer science or engineering, and aim to

foster real-world coding skills for Apple’s devices.

Nevertheless, this study aimed to investigate

the feasibility of using Swift as a first language

for humanities majors for two reasons: enhancing

motivation and fostering the ability to create

digital contents. The digital contents here include

Web applications, games, mobile applications,

interactive animations, and so on. For developing

those contents, engagement by people having

humanities backgrounds in planning and designing

those contents is essential. For students in

humanities to be involved in creation, learning

programming is inevitable to foster computational

thinking and to learn how to create those contents.

Humanities majors themselves recognize the

mounting importance and relevance of computing

in their own fields. Camp et al. (2017) reported the

large increase of non-majors taking computing

courses, because computing plays a role in a wide

range of disciplines and jobs.

Since iOS devices are widely used and familiar

to students as a platform of digital media, creating

applications for iOS devices attracts students’

interest and raises their motivation. Additionally, it

is desirable for students to be able to take the

course without the prerequisite of programming

experience. Examining the syllabi of iOS

programming courses offered in the US and

Canada, the author found that most of them set

prerequisites at a basic knowledge of programming

at least, because those are constructed as advanced

courses on a step-by-step curriculum to learn the

whole knowledge and skills of software

development in computing disciplines. However, the

requirement of prior programming experience may

make students hesitate to start learning iOS

application development. If it is possible to learn

application development by Swift as an

2 同志社女子大学　学術研究年報　第 72 巻　2021年

and MATLAB in the introductory courses. Enbody

et al. (2009, 2010) compared two groups of students’

grades for subsequent programming courses after

learning in Python or C＋＋ in introductory

programming courses. They found there was no

significant difference between the two groups.

Since Swift is relatively new and mainly used

for professional sectors, there are few studies on

Swift for learning programming. Rogers and Siever

(2015) showed advantages of using Swift compared

to Objective-C. However, little study could be found

comparing Swift to other popular languages. As

Tew et al. (2005) and Enbody et al. (2009, 2010)

reported, if it does not affect the future learning

no matter which programming language students

learn as the first one, Swift could be one of our

choices for the first learning language with the

advantage of facilitating students’ motivation,

though it is limited to the Apple environment.

2.2 Programming course for non-majors

Humanities majors do not always have a keen

interest in a deep level of understanding of

software development. Dawson et al. (2018)

proposed an introductory programming course

CS0.5 (computer science 0.5) for non-majors

regardless of their academic area of interest.

Dawson et al. reduced the overall number of

learning goals compared to CS1. It made the pass

rates of students improve considerably in CS0.5

over CS1; however, it did not address how to

capture students’ interest. Bishop-Clark et al. (2007),

and Ali and Smith (2014) also dealt with the fact

that taking a first programming course is

considered difficult for most non-major students.

Their solution is to teach Alice in introductory

programming courses. The Alice environment

makes it easier for students to create animation

and/or games. Their studies showed that working

with Alice helped to dispel the notion that

programming is “boring,” and it also enhanced

motivation. On the other hand, Alice is strictly a

teaching/learning tool, and is not used in

Several recent studies are reviewed. Kunken and

Allen (2016) developed a test to assess learning of

programming concepts, and used it to investigate

the impact of different teaching languages: C＋＋,

Java, and Visual Basic. Students’ learning to

program in Java and C＋＋ consistently performed

better than those learning to program in Visual

Basic.

As Python became popular as a first language

for learning programming, the reports on

comparing Python to Java and C increased.

Koulouri et al. (2014) revealed that using a

syntactically simple language (Python) instead of a

more complex one (Java) facilitated students’

learning of programming concepts. Wang et al.

(2017) selected Python to teach programming to

their students who possessed little prior experience.

They explained that the reasons for this are

simplicity, versatility, and flexibility of Python.

Wainer and Xavier (2018) compared an introductory

programming course in C to one in Python and

found that the course in Python yielded better

student outcomes than the course in C. The main

concern of introducing programming by Python is

that students learn using too simple a language,

which causes them to have difficulty when having

to handle a more complex one later on. Many

studies concluded that a programming course in

Python improved student grades and reduced

failure rates, and educators who changed their

learning language from C or Java to Python could

rest easy.

However, there are studies that show that no

substantial difference occurs regardless of the

language used in introductory programming

courses. Tew et al. (2005) investigated how the

outcomes differ depending on the students’

alternative first programming courses. Their study

revealed that the post-test at the end of the second

programming course indicated no significant

differences in students’ understanding of

programming concepts between students who

learned in Python and those who learned in Java

3First Programming Language for Humanities Majors - A Comparison of Java and Swift

2.3 Features as a learning programming

language

At first, this section considers features of Swift

as a learning programming language. Mannila and

Raadt (2006) compared several languages by 17

criteria for learning programming (Table 1). Each

criterion is drawn from the design decisions made

by four language creators as they described their

developing real-world applications. As a more

general environment, Fernandez et al. (2017)

conducted Android programming as a first course

that was open to all students with no prerequisites,

and used familiar Android mobile devices. They

reported that it was useful to motivate students,

and can awaken their interest in programming.

Table 1 Comparison of Language by Features for Learning Programming

Features

C C
＋
＋

E
iffe

l

Ja
v
a

Ja
v
a
S
c
rip

t

L
O
G
O

P
a
s
c
a
l

P
y
th
o
n

V
B

S
w
ift

Learning

(1) Is suitable for teaching ✔ ✔ ✔ ✔

(2) Can be used to apply physical analogies ✔ ✔ ✔ ✔ ✔ ✔ ✔

(3) Offers a general framework ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

(4) Promotes a design-driven approach for

teaching software
✔ 1a ✔ ✔

Design and Environment

(5) Is interactive and facilitates rapid code

development
✔ ✔ ✔

(6) Promotes writing correct programs 2b ✔ 2b 2b ✔

(7) Allows problems to be solved in “bite-sized

chunks”
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

(8) Provides a seamless development environment ✔ 1a ✔

Support and Availability

(9) Has a supportive user community ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

(10) Is open source, so anyone can contribute to

its development
✔

(11) Is consistently supported across environments ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

(12) Is freely and easily available ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

(13) Is supported with good teaching material ✔ ✔ ✔ ✔ ✔ ✔ ✔

Beyond Introductory Programming

(14) Is not used only in education ✔ ✔ ✔ ✔ ✔ ✔ ✔

(15) Is extensible ✔ ✔ ✔ ✔ ✔ ✔

(16) Is reliable and efficient ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

(17) Is not an example of the QWERTY

phenomena
✔ ✔ ✔ ✔ ✔ ✔ ✔

Mannila and Raddt’s score (except Swift) 8 11 15 14 9 9 7 15 9 12

Note: Table reprinted from Mannila and Raddt (2006) with addition of last column for Swift.
a : Possibly with some IDE (Integrated Development Environment).
b : Possibly with unit testing.

4 同志社女子大学　学術研究年報　第 72 巻　2021年

future, because users have to follow Apple’s future

plans and strategy.

Summarizing the comparison, Swift’s

characteristics are similar to Java with regard to

learning. An inevitable development environment

for programmers, Xcode, is a quite complex tool

for beginners; they are probably confounded by

what happens behind their manipulation. To

compensate for that, it provides the Playground

function that allows students to test snippets of

code. Additionally, since Swift programs can work

only on Apple’s devices, it can be said to be an

exclusive environment. This exclusiveness is one

reason for its seldom being chosen to learn

fundamental programming for beginners in higher

education in many cases.

3 Method in course practices and results

3.1 Course structure

The department established two courses to

teach programming for beginners: Introductory

programming in Java, and Introductory iOS

Development in Swift, in 2018 and 2019. Table 2

shows the syllabi for the two programming

courses, which took place in a 15-week semester.

Both courses have the same structure that starts

with basic concepts of programming, moves on to

the object-oriented (OO) concepts, and then

proceeds to development applications with GUI.

The course in Java (Prog A) used an editor and a

console window in class, not IDE (integrated

development environment) such as Eclipse. For

learning the basic concepts and the OO concepts

in Prog A, we used the Turtle Graphic library that

we developed to function the same as LOGO

(Ariga & Tsuiki 2001). It provides students an

intuitive understanding of fundamental procedures

and the object-oriented principles. In the Swift

course (Prog B), students learned those parts by

Playground where students used the print function

to see how a code works in a read-evaluate-print-

loop (REPL). In the GUI programming part, Prog

languages: LOGO, Pascal, Python, and Eiffel.

Criteria are grouped into four related subsections:

learning, design and environment, support and

availability, and beyond introductory programming.

The author added Swift’s evaluation to their

comparison in Table 1, and numbered the features

from one to 17.

A suitable language for teaching in feature (1)

means to have simple syntax and natural

semantics, avoiding cryptic symbols, abbreviations,

and other sources of confusion. Swift does not fit

this feature; neither does Java or C family. For

example, an optional type that is one of Swift’s

original elements is difficult for beginners to

understand. Swift is apparently more confusing

than Java for beginning learners. As regards the

other three features in the “learning” group, Swift

has the same functionalities as Java.

Since the Playground function in Xcode

provides interactive and immediate feedback, Swift

has feature (5). This is an advantage of Swift

compared to Java and C family. Feature (8) means

whether or not a language has an intuitive GUI

for design and implementation that provides access

to libraries for basic and advanced programming.

Xcode has those functions. Swift is superior to

other languages with respect to the features in the

“design and environment” group.

On the contrary, Swift has drawbacks in terms

of the features in the “support and availability”

group. While everybody can use Xcode freely and

there is a web site to post questions and get

comments from fellow developers, Swift and Xcode

have been developed by Apple Inc. for its own

devices; therefore, the whole decision is made by

Apple. For this reason, the answers to features (10)

and (11) are “no”.

Considering the features in the fourth group,

since Swift is a professional programming

language, not for learning, it is extensible for real

world applications (15) and reliable in creating

applications (16). However, regarding feature (17),

Swift cannot say its usefulness now and into the

5First Programming Language for Humanities Majors - A Comparison of Java and Swift

instantiation in the latter, since the UI components

are formed on the OO concept. The program codes

that showed in the questions were different

because they were based on the application that

each course addressed in class, but the questions

were intended to confirm the same points.

Forty students, who had not taken a

programming course before, participated in Prog A.

Twenty students took Prog B, divided into two

groups based on their previous learning experience:

ten students had no prior programming experience

(G1), and ten had taken Prog A in the preceding

semester (G2). The G2 students took Prog B for

aiming to learn development of iOS application.

All were the second- or third-year undergraduate

students, and females aged 20-22.

Table 3 and Fig. 1 show the examination

A used the JavaFX library, and Prog B used the

Cocoa Touch framework in Xcode environment.

3.2 Examination results

At the end of the course, examinations with

the same contents were conducted for both courses.

The examination consisted of two parts: a basic

concept part and a GUI part including object-

oriented concepts. The former included data types,

arithmetic operators, control flow, and function (or

method). For those grammatical elements, the

examinations asked the exact same questions for

both Java and Swift except for the differences of

their syntax. The latter asked about the basic

usage of UI component class, event handing by

showing a sample code. It included questions on

the basic OO such as class inheritance and

Table 2 Syllabus of courses in Java and Swift

Course in Java (Prog A) Course in Swift (Prog B)

1 Introducing Java, an editor and compiler Introducing Swift, Playground and Xcode

2
(TGa) Data Type, variable, assignment, arithmetic

operation, using methods

(Playground) Data Type, variable, assignment,

arithmetic operation

3 (TG) Creating methods, control flow (loop) (Playground) Control flow (loop and if)

4 (TG) Control flow (if) (Playground) Creating function

5 (TG) Array (Playground) Array

6 (TG) Creating class (Playground) Creating class

7 (TG) Creating class (Playground) Creating class

8 (JavaFX) UI component and layout
(Xcode) An app with UILabel, UIButton, and touch

interaction (Hello World)

9
(JavaFX) A program with Label, Button, and click

event (Hello World)

(Xcode) An app with calculation of an inputted

value in UITextField

10
(JavaFX) A program with calculation of an inputted

value in TextField

(Xcode) An app with calculation of an inputted

value in UITextField

11 (JavaFX) A program with Button and CheckBox
(Xcode) A tally counter app with UILabel and

UIButton,

12 (JavaFX) A program with Button and CheckBox
(Xcode) A tally counter app with UILabel and

UIButton,

13
(JavaFX) A rock-paper-scissors game with click

interaction
(Xcode) A smash game app with touch

14
(JavaFX) A drawing program with mouse

interaction
(Xcode) A smash game app with touch

15 Examination Examination

a : TG is Turtle Graphics library.

6 同志社女子大学　学術研究年報　第 72 巻　2021年

distribution of students’ scores for Prog A and

Prog B. Three box plots for the Swift course

(Prog B) respectively show from the left: the whole

class, the group without programming experience

(G1), and the group with Java experience (G2).

The comparison of the whole class indicates

no differences (basic concepts: p＝0.37, r＝0.12, GUI

＋OO: p＝0.68, r＝0.05). However, when looking into

the group without programming experience in Prog

results of both courses. Each part of the

examination (basic concept part and GUI＋OO

part) was on a 50-point scale. Table 3 presents

median and standard deviations for Prog A and

each group of students classified by prior

programming experience in Prog B. The author ran

a Mann-Whitney U test, and calculated an effect

size for comparing the examination result of Prog

A and each group of Prog B. Fig. 1 presents the

Table 3 Comparing examination result of Prog A and each group of ProgB

Course
Basic Conceptsa GUI and OOa

Median SD U-testb Rc Median SD U-testb Rc

Prog A

(Java, n＝40)
27.7 9.46 - 30.6 11.7 -

Prog B

(Swift)

All

(n＝20)
29.3 9.7

U: 343.0

z: 0.89

p: 0.37

0.12 31.4 11.4

U: 373.5

z: 0.42

p: 0.68

0.05

G1

(n＝10)
28.2 7.9

U: 183.0

z: 0.41

p: 0.68

0.06 20.0 7.7

U: 98.0

z: 2.48

p: 0.01

0.35

G2

(n＝10)
34.5 9.6

U: 126.0

z: 1.80

p: 0.07

0.26 40.0 10.4

U: 141.0

z: 1.43

p: 0.15

0.20

G1: Students without Java (Prog A) experience.

G2: Students who had taken Prog A.
a : Each test is 50-point scale.
b : Mann-Whitney U-test between ProgA and each group in ProgB.

U: U-value, z: standardized value, p: two-sided p-value.
c : Effect size (z/sqrt(N)).

Fig.1 Box plot of exam scores for the basic concepts and GUI part

7First Programming Language for Humanities Majors - A Comparison of Java and Swift

comprised six items (Appendix). Ramalingam and

Widenbeck (1998) developed a thirty-two-item self-

efficacy scale for C＋＋ programming by a seven-

point Likert style scale, and assessed its reliability.

Their scale has been used for studies of influence

from learning programming (Ramalingam et al.

2004; Sethuraman & Dee Medley 2009). The author

selected six items from their scale that are not

clearly affected by the learning contents and the

language environment, and used them for the

questionnaire.

Table 4 shows the median of the amount of

the self-efficacy scores that students judged by

themselves before and after the course, and the

result of a Wilcoxon signed-rank test. The median

of the self-efficacy scores increased significantly

over both courses: in Prog A from 11 to 18 (p＝0.002,

r＝-0.79), and in Prog B from 14.5 to 21.5 (p＝0.004,

r＝-0.82). It indicates that both courses, in Java and

Swift, equally affected an increase in self-efficacy.

Looking at data for G1 and G2 in Prog B, the self-

efficacy scores increased by seven points over the

course for both groups; however the number of

subjects was not large enough to calculate

statistical significance.

Additionally, students reflected on what they

learned from the course by filling out a free-

description questionnaire at the end of the course.

The author collected responses from 23 students in

Prog A and 12 students in Prog B (G1 group: 5,

B (G1), the median of the GUI＋OO part score in

G1 (Mdn＝20.0) is significantly lower than the one

in Prog A (Mdn＝30.6, p＝0.01, r＝0.35). It indicates

that Java is better than Swift in terms of learning

GUI and OO programming. Whereas, comparing

the median of the basic concept score of G1 (Mdn

＝28.2) to Prog A (Mdn＝27.2), there is no

significant difference (p＝0.68, r＝0.22). This shows

that a first learning language, whether Java or

Swift, does not affect learning of the basic

concepts for beginning learners. The statistical

difference for other comparisons was not

determined from the U-test.

The data of the two groups in Prog B in Fig.

1 shows that the scores of students with the Java

experience (G2) are higher than those of students

without experience (G1). A Mann Whitney U-test

was carried out to check the difference between

the two groups (Basic: U＝23.0, z＝2.04, p＝0.04,

r＝0.46, GUI＋OO: U＝12.0, z＝2.88 p＝0.004, r＝0.64);

the medians of G2 (Basic: 34.5, GUI＋OO: 40.0)

were significantly higher than those of G1 (Basic:

28.2, GUI＋OO: 20.0). Thus, this finding shows that

learning in the Java course naturally helps student

understand programming in Swift.

3.3 Students’ self-reflections

At the beginning and end of each course in

2019, I asked students to rate their own perception

of programming ability by a self-efficacy scale that

Table 4 Change in Self-efficacy for programming

Prog A (Java, n＝23)
Prog B (Swift)

G1＋G2 (n＝12) G1 (n＝5) G2 (n＝7)

Prea: 11 (SD: 5.0) Prea: 14.5 (SD: 6.4) Prea: 14 (SD: 2.9) Prea: 15 (SD: 4.2)

Postb: 18 (SD: 5.9) Postb: 21.5 (SD: 6.1) Postb: 21 (SD: 3.3) Postb: 22 (SD: 8.0)

Tc: 6.5, z: -3.8 Tc: 1.0, z: -2.8 Tc: 1.0, z: -1.62 Tc: 0, z: -2.1

p: 0.002, rd: -0.79 p: 0.004, rd: -0.82 - e - e

a : Median of pre-self-efficacy scores.
b : Median of post-self-efficacy scores.
c : Wilcoxon signed-rank test statistic, z: standardized value, p: two-sided p-value.
d : Effect size (z/sqrt(N)).
e : N is not large enough to calculate a p-value.

8 同志社女子大学　学術研究年報　第 72 巻　2021年

comments and the number of comments for each

category and each course. While the percentage of

comments in the categories 1, 4, and 5 do not

display considerable differences between the

courses, category 2 (tool) appears only in the Swift

course and category 3 (conceptual thinking) appears

only in the Java course.

G2 group: 7), and qualitatively analysed them. 45

key sentences were extracted from students’

comments and classified into five categories using

SCAT (Steps for Coding and Theorization) open

coding. Compared to Grounded Theory Approach,

SCAT is a simplified qualitative data analysis

method (Otani 2008). Table 5 shows sample

Table 5 Comparing free description comments of Prog A and Prog B

Responses to a question of what you learn from the course
Prog A (Java) Prog B (Swift)

Category Sample comments

1. Direct knowledge of

programming

I learned basic knowledge of Java/Swift.

I learned how to write a program.

I understood how a program works.

I understood how to create an application.

18 (66%)
11 (61%)

[G1: 5, G2: 6]

2. Tool I learned how to use Xcode. -
3 (17%)

[G1: 2, G2: 1]

3. Conceptual thinking

I obtained an ability to think how to solve a

problem by myself.

I learned a way to organize a problem to solve.

I learned a way to think computationally.

5 (19%) -

4. Joy

I found enjoyment of creating a program by

myself.

I felt achievement.

1 (3.7%)
2 (11%)

[G1: 2]

5. Self-efficacy

I had confidence to create a simple program.

I want to create a program by myself.

I could predict how a program runs.

3 (11%)
2 (11%)

[G1: 2]

Note: Total number of comment statements is 27 in Prog A and 18 in Prog B.

(%): Percentage of the number of students who wrote the comment.

errors that can be a significant impediment to

relatively novice students. However, the comparison

of the examination scores showed that there was

no difference between Swift and Java to teach the

basic concepts.

The author assessed Swift similar to Java for

the features of syntax and semantics as a learning

language (Table 1), though Java requires complex

syntactic and semantic knowledge to simply

display “Hello world” to the screen compared to

Swift. One reason is that in the case of displaying

a few words on a mobile device or a simulator in

Swift, a program should include many grammatical

elements, and they are not as simple as Java.

Another reason is that Swift has peculiar

4 Discussion

4.1 Basic concept part and language feature

Regarding Java, many educators noted that

even a simple program in Java has a verbose and

complex syntax overhead (Mannila et al. 2006;

Bishop-Clark et al. 2007). In the case of the typical

“Hello world” example to output a short phrase,

Swift on Playground needs just one sentence: print

(“Hello world”); while Java requires knowledge of a

class, a main method, modifiers, and array. This

feature seems to cause Swift’s advantage of

teaching the basic knowledge as the first language.

Rogers and Siever (2015) mentioned that Swift is

designed to avoid most of the simple, subtle logic

9First Programming Language for Humanities Majors - A Comparison of Java and Swift

4.2 GUI＋OO part and Xcode

The median of the examination score for the

GUI and OO part in the Java course (30.6) was

significantly higher than one in the Swift course

(20.0, Table 3). It indicates that Java is better than

Swift for beginners to learn the GUI and object-

oriented program. There are three possible reasons;

one is that Xcode hides the process of creating an

object from an GUI component class in the Swift

course. Students just manipulate Interface Builder

in Xcode by the drag and drop operation to create

an object and set it in a view that represents a

monitor screen. However, in Java, students need to

explicitly write codes to create an object from an

GUI component class, and those procedures

probably help to enhance understanding of the

object-oriented programming concepts.

The second reason is the grammatical element

for memory management. When students proceed

to the stage of learning GUI in Swift, they have to

understand modifiers for memory management,

“strong” and “weak,” that specify how to keep

data of a variable in memory. Swift does not

require programmers to explicitly delete data, but

they must correctly specify with a “strong” and

“weak” modifier to organize memory. Xcode adds

the proper declaration of a variable to store a

reference to a GUI component when setting up the

connection between a variable and an GUI

component in Interface Builder; that is, students

do not need to specify it manually. They can

compile and run an application if they ignore the

meaning. Consequently, they could not answer

clearly the examination question about a definition

of a variable including a modifier. In contrast,

since Java has a garbage collection routine that

automatically removes and reclaims memory for

reuse when data are no longer necessary, students

do not need to deal directly with the codes for

memory allocation and recovery.

Additionally, an optional type is inevitable for

GUI programming in Swift. Xcode automatically

adds a mark for an optional type to a variable of

grammatical elements that make it difficult for

beginners to understand: named parameters and

optional types. Named parameters are supported in

many languages, but not in Java. In Swift, each

function parameter has both an argument label

and a parameter name. An argument label is an

external name, and used when calling a function.

A parameter name is a local name, and used in

the implementation of a function. Introduction of

an argument label is intended to call a function in

a natural English sentence manner, and improve

readability of codes, as a book on Swift

programming (e.g. Sahar & Clayton, 2020) explains

the advantage of an argument label. However, it

introduces a verbose element that novice students

do not easily understand. In addition, the use of

an argument label does not enhance readability

when calling a function for non-native English

speakers, rather it confuses them because of the

two names of a parameter.

An optional type is another element that

confuses students. The author explained to novice

students that it can have a value of nil, which

represents no value, but they cannot clearly

understand in which case they should use an

optional type. When they miss adding a trailing

question mark for specifying an optional type in a

case of necessity, Xcode suggests a correct code. It

is helpful, but does not encourage understanding

of why that mark is necessary.

Hence the author judged that Swift does not

meet the criterion that the language has a simple

syntax and natural semantics, avoiding cryptic

symbols, abbreviations, and other sources of

confusion, just as Mannila and Raadt (2006)

assessed Java. The author was rather concerned

that Swift had defects for learning the basic

concepts as the first language compared to Java

because of these peculiar grammatical elements,

but the results of the examination scores show

that the Swift course can teach the basic

knowledge of introductory programming as well as

the Java course.

10 同志社女子大学　学術研究年報　第 72 巻　2021年

Playground and creating an application by Xcode.

The author assumed that students would be easily

frustrated with programming because of Xcode’s

complexity and puzzling responses. However, the

result showed that self-efficacy in the Swift course

increased as in the Java course. This finding

indicates that students felt that their confidence in

programming was enhanced through the Swift

course.

The qualitative analysis of students’ responses

to the question of what they learned from the

course (Table 5) shows that around 60% of the

total comments were commonly classified as

category 1 for both courses. The students naturally

perceived that the core of their learning was to

gain the basic knowledge and understand how to

create a program.

The comments about tools (category 2)

appeared only in the Swift course, though the

number of comments was small, and no comment

in category 2 appeared in the Java course. It was

a natural consequence, because the Java course did

not use IDE as opposite to the Swift course using

Xcode. On the other hand, the comments in

category 3 were observed only in the Java course

with the same percentage as category 2 in the

Swift course. Those comments were related to the

abstract perception on programming, not direct

and practical knowledge. Students in the Swift

course did not mention abstract things like the

ability to think. They tended to focus on concrete

things on skills such as a way how to use Xcode.

The author assumes that what they learned in the

Swift course remained practical matters, and was

hardly recognized as abstract knowledge of

programming.

5 Conclusion

This study explored how the department could

teach introductory programming and simultaneously

creation of entry level applications in Swift to

humanities majors without a prerequisite by

an UI component. It is very helpful as mentioned

above, but students could not answer the meaning

of it correctly. Those three issues probably

prevented students from understanding the GUI

and OO in the Swift course.

The author tried to use Swift as the first

programming language, aiming to offer a course

for humanities majors to be able to learn not only

basic programming concepts but also development

of iOS applications without the prerequisite of

programming experience. Unfortunately, the

findings showed that the Java course was better

than the Swift course in the examination scores of

the GUI and OO parts, and prior programming

experience by a Java course was preferable for

students to make learning in Swift effective.

4.3 Students’ perception of programming

Self-efficacy is another instrument to measure

effect from the courses. Students’ self-efficacy

would be expectedly increase as a result of

learning programming. Students in 2019 answered

the questionnaire for their programming self-

efficacy. The post-self-efficacy scores were seven

points higher than the pre-self-efficacy scores in

both courses (Table 4). In each group (G1 and G2)

in the Swift course, the self-efficacy scores also

increased by seven points, but the result could not

show the statistical significance, since the number

of students in each group was small.

Students’ frustration with Xcode in the Swift

course was another concern, whether with or

without prior programming experience. Xcode is

the complex IDE for developing real applications,

and it confounds students, especially when an

error occurs. In the Swift course, students used

Playground at the first phase of the course to

acquire the basic programming concepts and Swift

grammar, then the course proceeded to

development of a GUI application by using Xcode.

The interface and manipulation of Xcode is

different from those in Playground, and there is a

wide gap between testing snippets of code by

11First Programming Language for Humanities Majors - A Comparison of Java and Swift

Bulletin, 33(4), 59-63. https://doi.org/10.1145/572139.

572172

Bishop-Clark, C., Courte, J., Evans, D., & Howard,

E. V. (2007). A Quantitative and Qualitative

Investigation of Using Alice Programming to

Improve Confidence, Enjoyment and Achievement

among Non-Majors. Journal of Educational

Computing Research, 37(2), 193-207. https://doi.

org/10.2190/J8W3-74U6-Q064-12J5

Camp, T., Adrion, W. R., Bizot, B., Davidson, S.,

Hall, M., Hambrusch, S., Walker, E., & Zweben,

S. (2017). Generation CS: The Growth of

Computer Science. ACM Inroads, 8(2), 44-50.

https://doi.orgs/10.1145/3084362

Davies, F., Polack-Wahl, J. A., & Anewalt, K.

(2011). A Snapshot of Current Practices in

Teaching the Introductory Programming

Sequence. Proceedings of the 42nd ACM technical

symposium on Computer science education, 625-630.

https://doi.org/10.1145/1953163.1953339

Dawson, J. Q., Allen, M., Campbell, A., & Valair,

A. (2018). Designing an Introductory Programming

Course to Improve Non-Majors’ Experiences.

Proceedings of the 49th ACM Technical

Symposium on Computer Science Education, 26-31.

https://doi.org/10.1145/3159450.3159548

Enbody, R. J., Punch, W. F., & McCullen, M.

(2009). Python CS1 as preparation for C＋＋ CS2.

Proceedings of the 40th ACM technical symposium

on Computer science education, 116-120. https://

doi.org/10.1145/1508865.1508907

Enbody, R. J., & Punch, W. F. (2010). Performance

of python CS1 students in mid-level non-python

CS courses. Proceedings of the 41st ACM technical

symposium on Computer science education, 520-523.

https://doi.org/10.1145/1734263.1734437

Fernández, C., Vicente, M. A., Galotto, M. M.,

Martinez-Rach, M., & Pomares, A. (2017).

Improving student engagement on programming

using app development with Android devices.

Computer Applications in Engineering Education,

25(5), 659-668. https://doi.org/10.1002/cae.21827

Koulouri, T., Lauria, S., & Macredie, R. D. (2014).

comparing the introductory courses in Java and

Swift. The result indicated that students can learn

the basic programming concepts in Swift, similar

to in Java, but the effect of the Swift course for

the GUI and OO part was inferior to that of the

Java course. From the finding that the previous

learning in Java positively affected learning in the

Swift course, Java is considered to be a better

choice for an introductory programming rather

than Swift.

Not only students with a CS background but

also those with a humanities background will be

expected to participate in planning and designing

new digital contents based on information

technology in the future. Fostering the ability of

creating digital contents is therefore significant for

students regardless of major. For this purpose, our

Swift course also intended to capture the

motivation of humanities majors in programming.

The result showed an increase in self-efficacy for

programming in the Swift course as well as in the

Java course. This finding suggests that the Swift

course enhances the perception of confidence of

programming regardless of the level of gained

knowledge over the course, and encourages

humanities majors to continue learning

programming.

Observing more students’ self-reflections is

necessary to discuss about motivation and

satisfaction obtained from the course sufficiently.

In future work, the author intends to collect more

data of students’ self-efficacy and reflections, and

examine them.

References

Ali, A., & Smith, D. (2014). Teaching an

introductory programming language in a general

education course. Journal of Information

Technology Education: Innovations in Practice. 13,

57-67. https://doi.org/10.28945/1992

Ariga, T., & Tsuiki, H. (2001). Programming for

students of information design. ACM SIGCSE

12 同志社女子大学　学術研究年報　第 72 巻　2021年

Rogers, M. P., & Siever, B. (2015). Switching to

Swift: instructional issues and student sentiment.

Journal of Computing Sciences in Colleges, 30(5),

144-150.

Sahar, A., & Clayton, C. (2020). iOS 13

Programming for Beginners, Packt Publishing

Ltd.

Sethuraman, S., & Dee Medley, M. (2009). Age and

self-efficacy in programming, Journal of

Computing Sciences in Colleges, 25(2), 122-128.

Simon, Mason, R., Crick, T., Davenport, J. H., &

Murphy, E. (2018). Language Choice in

Introductory Programming Courses at Australasian

and UK Universities. Proceedings of the 49th

ACM Technical Symposium on Computer Science

Education, 852-857. https://doi.org/10.1145/3159450.

3159547

Tew, A. E., McCracken, W. M., & Guzdial, M.

(2005). Impact of alternative introductory courses

on programming concept understanding.

Proceedings of the first international workshop on

Computing education research, 25-35. https://doi.

org/10.1145/ 1089786.1089789

Wainer, J., & Xavier, E. C. (2018). A Controlled

Experiment on Python vs C for an Introductory

Programming Course: Students’ Outcomes. ACM

Transactions on Computing Education, 18(3),

Article 12, 16 pages. https://doi.org/10.1145/3152894

Wang, Y., Hill K. J., & Foley, E. C. (2017).

Computer programming with Python for

industrial and systems engineers: Perspectives

from an instructor and students. Computer

Applications in Engineering Education, 25(5), 800-

811. https://doi.org/10.1002/cae.21837

Appendix:

Questionnaires for Self-efficacy of programming

Rate your confidence in doing following

programming tasks using a scale of 1 (not at all

confident), 2 (mostly not confident), 3 (slightly

confident), 4 (50/50), 5 (fairly confident), 6 (mostly

confident), or 7 (absolutely confident).

Teaching introductory programming: A

quantitative evaluation of different approaches.

ACM Transactions on Computing Education, 14(4),

Article 26, 28 pages. https://doi.org/10.1145/2662412

Kunkle, W. M., & Allen, R. B. (2016). The impact

of different teaching approaches and languages

on student learning of introductory programming

concepts. ACM Transactions on Computing

Education, 16(1), Article 3, 26 pages. https://doi.

org/10.1145/2785807

Mannila, L., Peltomaki, M., & Salakoski, T. (2006).

What about a simple language? Analyzing the

difficulties in learning to program. Journal of

Computer Science Education, 16(3), 211-227. https://

doi.org/10.1080/08993400600912384

Mannila, L., & Raadt, M. (2006). An objective

comparison of languages for teaching

introductory programming. Proceedings of the 6th

Baltic Sea conference on Computing education

research, 32-37. https://doi.org/10.1145/1315803.

1315811

Murphy, E., Crick, T., & Davenport, J. H. (2017).

An Analysis of Introductory Programming

Courses at UK Universities. The Art, Science, and

Engineering of Programming, 1(2), Article 18, 23

pages. https://doi.org/10.22152/programming-journal.

org/2017/1/18

Otani, T. (2008). “SCAT” a qualitative data analysis

method by four-step coding: Easy startable and

small scale data-applicable process of

theorization. Bulletin of Nagoya University

graduate school in education, 54(2), 27-44.

Ramalingam, V., & Wiedenbeck, S. (1998).

Development and validation of scores on a

computer programming self-efficacy scale and

group analyses of novice programmer self-

efficacy, Journal of Educational Computing

Research, 19(4), 365-379. https://doi.org/10.2190/

C670-Y3C8-LTJ1-CT3P

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004).

Self-efficacy and mental models in learning to

program, ACM SIGCSE Bulletin, 36(3), 171-175.

https://doi.org/10.1145/1026487.1008042

13First Programming Language for Humanities Majors - A Comparison of Java and Swift

(1) I can write syntactically correct Java/Swift

statements.

(2) I can debug (correct all errors) a long and

complex program that I had written and make

it work.

(3) I could complete a programming project if I

had only the language reference manual for

help.

(4) I could complete a programming project if I

had a lot of time to complete the program.

(5) I could find ways of overcoming the problem

if I got stuck at a point while working on a

programming project.

(6) I could mentally trace through the execution of

a program given to me.

14 同志社女子大学　学術研究年報　第 72 巻　2021年

