
Abstract

The main purpose of this study is to investigate the semi-public loss prevention, wherein only some 

individuals undertake public loss prevention, while all individuals undertake private loss prevention. This 

study builds an economic model for examining the optimal private loss prevention for all individuals 

and the optimal fee amount to be paid to the association that collects a fee from some individuals and 

undertakes public loss prevention.
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1. Introduction

 In the field of risk management, loss prevention is 

one of the important aspects requiring investigation. The 

main problem is that individuals might not voluntarily 

undertake loss prevention. 

In the field of microeconomic theory, individuals 

would undertake loss prevention only when their 

expected utility from doing so is larger than that obtained 

by not doing so.

There are many studies that investigate the loss 

prevention. It is often discussed in economic models in 

insurance because an insurance contract influences not 

only the risk allocation, but also the incentive schemes, 

such as deductibles and experience rating, to achieve loss 

prevention. The pioneering studies in this research field 

are, Holmstrom (1979), Raviv (1979), Shavell (1979), and 

Rubinstein and Yaari (1983).1

These literatures focus mainly on the effect of an 

individual’s loss prevention. They focus on situations in 

which an individual incurs a loss prevention cost and 

himself or herself enjoys the benefit from loss prevention. 

Thus, it is called “private” loss prevention.

In contrast, Lee (1992) built a model that includes 

the loss prevention undertaken by the government. In 

this model, the government collects the tax from all 

individuals and undertakes loss prevention. In contrast 

to private loss prevention, the moral hazard problem is 

alleviated because the government compels individuals 

who do not want to voluntarily undertake loss prevention 
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to pay tax. However, each individual cannot undertake 

his or her optimal loss prevention if there are differences 

in wealth, utility, and loss prevention cost functions; 

this is because the loss prevention undertaken by the 

government is the same across all individuals. This study 

focuses on the situation in which all individuals incur 

a loss prevention cost and enjoy the benefit from loss 

prevention. Thus, in Lee (1992), it is called “public” loss 

prevention.

Although there are studies that have investigated 

private and public loss prevention, there is another kind 

of loss prevention—called “semi-public” loss prevention—

in the real world. “Semi-public” implies that only some 

individuals undertake public loss prevention, while all 

individuals undertake private loss prevention.

The most plausible example of semi-public loss 

prevention is the loss prevention undertaken by the 

Japan Traffic Safety Association (JTSA). According to the 

webpage of JTSA, the main function of JTSA is to engage 

in activities promoting traffic safety.2  For example, JTSA 

gives yellow caps and hats to small children; because 

such children appear prominent and can be easily spotted 

by drivers, the probability of road accidents occurring is 

lowered. To conduct such activities, JTSA collects a fee 

from the individuals who drive automobiles. Although 

they are not obliged to pay this fee, some of them pay 

this fee when they renew their driver’s license. From the 

viewpoint of loss prevention, the individuals who drive 

automobiles indirectly undertake public loss prevention 

by paying the fee to JTSA. In contrast, individuals who 

cannot drive automobiles—for instance, small children—

never commit public loss prevention because they do 

not pay the fee. Further, we know that all individuals 

undertake private loss prevention for their own benefits.

The purpose of this study is to investigate such semi-

public loss prevention through a microeconomic model. 

This study is organized as follows. Section 2 develops a 

model containing the individuals who can, and cannot, 

drive automobiles and the association that collects the 

fee from individuals who can. The equilibrium of this 

model is derived in section 3. Comparative statics are 

presented in section 4 and the main results of this study 

are derived. Section 5 has concluding remarks.

2. The Model

Suppose that there are two types of individuals. The 

first type includes those who have an opportunity to 

drive automobiles (hereafter, “type A” individuals). The 

second type includes those who never drive automobiles 

(hereafter, “type N” individuals). Assume that the total 

number of individuals is normalized to one and n∈(0,1) 

represents the ratio of type A individuals to the total 

population. Assume that each individual is either a driver 

or pedestrian. Further, assume that all accidents occur 

because of a collision between automobile (driver) and 

pedestrian. γ∈(0,1) indicates the ratio of hours spent 

driving to total hours of type A individuals. In contrast, 

type N individuals are always pedestrians because 

they never drive automobiles. Furthermore, there is an 

association that collects a fee from type A individuals and 

undertakes public loss prevention for pedestrians through 

activities, such as giving yellow caps and hats to children. 

The following two-stage game is considered.

In the first stage, the association decides the fee 

amount. For the sake of simplicity, all type A individuals 

pay the same fee amount, denoted by f >0. Thus, the 

total fee amount can be written as nf. However, the 

association also uses the fee for other purposes, such as 

paying salaries of employees in the association. θ∈(0,1) 

denotes the proportion of its budget that the association 

spends on loss prevention. The association invests the 

fee it collects on activities that lower pedestrian’s private 

loss prevention costs. Such loss prevention benefits all 

pedestrians, that is, both types of individuals. Then, the 

loss prevention conducted by the association can be 

understood as public loss prevention. 

In the second stage, after observing the fee amount, 

both types of individuals decide their level of private 

loss prevention. Let ej
i be the level of private loss 

prevention. i∈{A,N} represents an individual’s type and j

∈{D,P} represents an individual’s status, where D and P 

denote “driver(s)” and “pedestrian(s)”, respectively.3  kD
A 

represents the private loss prevention cost function of 

drivers and the form of this function is assumed to be

同志社女子大学　学術研究年報　第 70 巻　2019年2



where aD>0. In contrast, kP
i represents the private loss 

prevention cost function of pedestrians and its form is 

assumed to be

where aP>0 . θnf in equat ion (1 )  represents the 

association’s investment, which is equal to the amount it 

spends on public loss prevention. Then, the association 

can lower the marginal cost of private loss prevention of 

pedestrians, but this effect is marginally decreasing.

Accident probability is denoted by π∈[0,1]. The 

accident probability depends on the ratio of type A and 

type N individuals; the ratio of hours spent driving to 

total hours of type A individuals, as represented by γ; 

and the level of private loss prevention for both types of 

individuals. In this model, accident probability is assumed 

to be

The explanation for equation (2) is as follows. First,  

2nγ(1-nγ) represents the probability of an automobile 

colliding with a pedestrian. Second, the brackets in 

equation (2) indicate the effect of private loss prevention. 

The more the private loss prevention, the lower 

the accident probability. The braces in equation (2) 

indicate the expected level of private loss prevention of 

pedestrians.

If an accident occurs, both driver and pedestrian 

suffer damage. xD and xP represent the level of damage 

when the individual is a driver and pedestrian, 

respectively.

From the above setting, the expected costs for each 

type of individual, which are denoted by ci, can be written 

as follows.

Further, we assume that all individuals want to minimize 

the expected costs shown in equations (3) and (4). In 

contrast, the association wants to minimize the following 

total costs that are denoted by c.

3. Deriving the Equilibrium

 In the second stage, the first order conditions can be 

written as

where the asterisk represents the equilibrium value.4  

From equations (6) to (8), each optimal private loss 

prevention can be derived as

For ensuring π∈[0,1], we assume that both aD and aP are 

not small. 

Substituting equations (9) through (11) into equations 

(3) and (4), we show

where 

In the first stage, the association chooses the optimal 

fee amount. By using equations (5), (12), and (13), the 

following first order condition can be derived.5 
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where �� � 0. ���  in equation (1) represents the association’s 
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The explanation for equation (2) is as follows. First, 2���1 � ��� 
represents the probability of an automobile colliding with a 

pedestrian. Second, the brackets in equation (2) indicate the effect 
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From the above setting, the expected costs for each type of 
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expected costs shown in equations (3) and (4). In contrast, the 

association wants to minimize the following total costs that are 

denoted by �. 
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4. Comparative Statics 
   In this section, we demonstrate the effect of exogenous 

variables on the optimal fee amount and the private loss prevention 

represented in equations (9), (16), (17), and (18). This model has 

seven exogenous variables—��, ��, ��, ��, �, � , and � . We can 

easily verify the effect of the former five exogenous variables and 

derive the following proposition. 

 

Proposition 1: From comparative statics, the following results are 

derived. First, an increase in the marginal cost of driver’s private 

loss prevention does not change the optimal fee amount and a 

pedestrian’s optimal private loss prevention, while it decreases 

driver’s optimal private loss prevention. Second, an increase in the 

marginal cost of a pedestrian’s private loss prevention decreases 

the optimal fee amount and pedestrian’s optimal private loss 

prevention, while it does not change driver’s optimal private loss 

prevention. Third, an increase in the extent of damages increases 

the optimal fee amount, as well as the pedestrian’s and driver’s 

optimal private loss prevention. Fourth, an increase in the 
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change the optimal fee amount and a pedestrian’s 
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The results described in proposition 1 are very 

intuitive. First, from equation (16), we find the marginal 

cost of driver’s private loss prevention is not related 

to the optimal fee amount. Thus, only the drivers lead 

to decrease their optimal private loss prevention when 

the marginal cost of driver’s private loss prevention 

increases. Second, an increase in the marginal cost of 

pedestrian’s private loss prevention means that his or 
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individuals to the total population leads to an increase 
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in the optimal fee amount.

Proof : see Appendix B

Proposition 3: In general, whether an increase in the 

ratio of hours spent driving to total hours of type 

A individuals increases the optimal fee amount is 

indeterminate. Then, n<1/2 andγ<4/5 are sufficient 

conditions for realizing that an increase in the ratio of 

hours spent driving to total hours of type A individuals 

leads to an increase in the optimal fee amount.

Proof : see Appendix C

The implications of both propositions are explained 

as follows. First, unlike the other five exogenous variables, 

we cannot derive a determinant result about the optimal 

fee amount because n and 1-n (γ and 1-γ) coexist in 

equation (16). Second, sufficient conditions for realizing  

∂f */∂n>0 and ∂f */∂γ>0 can be derived regardless of 

the extent of damages xD and xP. From the viewpoint of 

these sufficient conditions, the magnitudes of γ and n are 

key variables to decide the effect of these two exogenous 

variables. 

By using the above two propositions, we can 

consider the effect of change in each exogenous variable 

on the optimal private loss prevention. From equations 

(10) and (11), we can derive the following equations if the 

conditions written in Propositions 2 and 3 are satisfied, 

that is, ∂f */∂n>0 and ∂f */∂γ>0 are realized.

In equations (19) and (20), n>3/5 and xD≥ xP are sufficient 

conditions for satisfying these relations. In contrast, by 

differentiating equation (9) with respect to n andγ, we 

find that the signs of ∂eD
A*/∂n and ∂eD

A*/∂γ are 

indeterminate.

From the above analysis, we can derive the following 

proposition.

Proposition 4: First, increases in the ratio of type A 

individuals to the total population and the ratio of 

hours spent driving to total hours of type A individuals 

lead to an increase in the pedestrian’s optimal private 

loss prevention when the conditions that are described 

in propositions 2 and 3 and additional sufficient 

conditions, such as n>3/5 and xD≥ xP, are satisfied. 

Second, whether increases in the ratio of type A 

individuals to the total population and the ratio of 

hours spent driving to total hours of type A individuals 

lead to an increase in the driver’s optimal private loss 

prevention are indeterminate.

In light of Propositions 2 through 4, we find how the 

changes in the ratio of type A individuals to the total 

population and the ratio of hours spent driving to total 

hours of type A individuals affect the optimal fee amount 

and the optimal private loss are generally indeterminate. 

Under some conditions, we know that the increases in 

the ratio of type A individuals to the total population and 

the ratio of hours spent driving to total hours of type A 

individuals lead to an increase in the optimal fee amount 

and the pedestrian’s optimal private loss prevention.

In the end, the results in the comparative statics can 

be summarized in the following table.
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proportion of the budget that the association spends on public loss 

prevention increases the optimal fee amount and pedestrian’s 

optimal private loss prevention, while it does not change driver’s 

optimal private loss prevention. 

 

   The results described in proposition 1 are very intuitive. First, 

from equation (16), we find the marginal cost of driver’s private 

loss prevention is not related to the optimal fee amount. Thus, only 

the drivers lead to decrease their optimal private loss prevention 

when the marginal cost of driver’s private loss prevention 

increases. Second, an increase in the marginal cost of pedestrian’s 

private loss prevention means that his or her private loss 

prevention becomes less efficient. Thus, the association decreases 

the optimal fee amount and pedestrian’s optimal private loss 

prevention is lowered. Third, an increase in the extent of damages 

enhances the demand for private loss prevention. Then, the 

association increases the optimal fee amount and both pedestrians 

and drivers lead to increase their optimal private loss prevention. 

Fourth, an increase in the proportion of the budget that the 

association spends on public loss prevention means that the 

marginal effect of fee increases. Thus, the association leads to 

increase the optimal fee and then the pedestrians also increase 

optimal private loss prevention. However, the driver’s optimal 

private loss prevention is not changed because a change in the fee 

amount is not related to the driver’s private loss prevention. 

   In contrast, the effects of the remaining two exogenous 

variables, � and � seem to be complicated. The following two 

propositions describe the effect of change in each exogenous 

variable on the optimal fee amount. 

 

Proposition 2: In general, whether an increase in the ratio of type 

A individuals to the total population leads to an increase in the 

optimal fee amount is indeterminate. Then, � � ��4���  is a 

sufficient condition for realizing that an increase in the ratio of type 

A individuals to the total population leads to an increase in the 

optimal fee amount. 

 

Proof: see Appendix B 

 

Proposition 3: In general, whether an increase in the ratio of hours 

spent driving to total hours of type A individuals increases the 

optimal fee amount is indeterminate. Then, � � � �⁄  and � �
4 5⁄  are sufficient conditions for realizing that an increase in the 

ratio of hours spent driving to total hours of type A individuals 

leads to an increase in the optimal fee amount. 

 

Proof: see Appendix C 

 

The implications of both propositions are explained as follows. 

First, unlike the other five exogenous variables, we cannot derive 

a determinant result about the optimal fee amount because � and 

� � � (� and � � �) coexist in equation (16). Second, sufficient 

conditions for realizing ��∗ ��⁄ � �  and ��∗ ��⁄ � �  can be 

derived regardless of the extent of damages �� and ��. From the 

viewpoint of these sufficient conditions, the magnitudes of � and 

� are key variables to decide the effect of these two exogenous 

variables.  

   By using the above two propositions, we can consider the 

effect of change in each exogenous variable on the optimal private 

loss prevention. From equations (10) and (11), we can derive the 

following equations if the conditions written in Propositions 2 and 

3 are satisfied, that is, ��∗ ��⁄ � � and ��∗ ��⁄ � � are realized. 

����∗
�� � ��� 

����∗
�� � �������� � 3

5 � ���� 

����∗
�� � �������� � ��� ���� 

����∗
�� � ��� 

In equations (19) and (20), � � 3 5⁄  and �� � �� are sufficient 

conditions for satisfying these relations. In contrast, by 

differentiating equation (9) with respect to � and �, we find that 

the signs of � ���∗ ��⁄  and � ���∗ ��⁄  are indeterminate. 

From the above analysis, we can derive the following 

proposition. 

 

Proposition 4: First, increases in the ratio of type A individuals to 

the total population and the ratio of hours spent driving to total 

hours of type A individuals lead to an increase in the pedestrian’s 

optimal private loss prevention when the conditions that are 

Notes:  

1. “0” represents the case in which the equilibrium value is not changed 

when the exogenous variable changes. 

2. “?” represents the effect is indeterminate. 

3. All signs in column  indicate case when . 

4. All signs in column  indicate case when  and . 

Table: The results in comparative statics
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5. Concluding Remarks

This study focused on the semi-publ ic loss 

prevention, wherein only some individuals undertake 

public loss prevention, while all individuals undertake 

private loss prevention. The main results of this study 

are summarized by the four propositions derived from 

comparative statics. Then, they find how to change the 

optimal fee amount and the private loss prevention when 

the exogenous situation is changed.

This study builds a simple model and we propose 

some possible extension of this model. For example, this 

model assumed that the individuals of each type are 

identical. Thus, for example, the ratio of hours spent 

driving to total hours of all type A individuals are same. 

If this assumption is relaxed, some results derived from 

this study might be changed.

Appendix A
In order to confirm C>0, it is sufficient to prove that 

the minimum value of C is strictly positive. In order to 

derive the minimum value of C, the first order conditions 

of equation (15), with respect to n and γ, are derived as 

follows.

From equations (A1) and (A2), two kinds of solutions, that 

is, {n,γ}={0,-1} and {n,γ}={1,1} are derived. Second order 

conditions are

Then, we know that {n,γ}={1,1} is a unique solution to 

realize the minimum value of C because ∂2C/∂n2=2>0, 

∂2C/∂γ2=2>0, and (∂2C/∂n2 )(∂2C/∂γ2)-(∂2C/∂n∂

γ)2=3>0. When {n,γ}={1,1}, C=0 is realized. Thus, we can 
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This study builds a simple model and we propose some 

possible extension of this model. For example, this model assumed 
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   The function � can be presented as 
� � 9�����1 � �����  

���2���5 � 7��1 � �� � 9���1 � � � �������� 

��3 � ���5�1 � 2�� � ��7 � 14�� � 9���1 � � � ���������. ��2� 
The first term on the right-hand side of equation (B2) is always 

strictly positive, but the signs of second and third terms are 

indeterminate. Thus, in general, we cannot find the sign of �. In 

order to know the characteristics of �  in detail, we check the 

condition under which � � 0 tendency is to be realized. 

   From equation (B2), regardless of the magnitudes of �� and 

�� , the following two equations are sufficient conditions for 

realizing � � 0. 
�� � 5 � 7��1 � �� � 9���1 � � � ��� � 0, ��3� 

�� � 3 � ���5�1 � 2�� � ��7 � 14�� � 9���1 � � � �����
� 0. ��4� 

   From equation (B3), we find that �� is the convex quadratic 

function of � and one minimum value exists because 1 � � �
�� � 0. Thus, it is sufficient to check the condition for realizing 

�� � 0 when �� has the minimum value. First order condition of 

��, with respect to � is 

���
�� � �7�1 � �� � 18��1 � � � ��� � 0. ��5� 

From equation (B5), we find the following value of �  to 

minimize ��. 

� � 7�1 � ��
18�1 � � � ��� . ��6� 

In relation to equation (B6), the following lemma is indicated. 

 

Lemma B1: Equation (B6) always exists in the range �0,1�. 
 

Proof:  
� � 0  is always satisfied because both numerator and 

denominator in equation (B6) are strictly positive. The condition 

in which � � 1 is equivalent to 7�1 � �� � 18�1 � � � ���. This 

inequality can be rewritten as ��25 � 18�� � 11. The left-hand 

side of this inequality is a concave quadratic function of � and 

one maximum value exists. � � 25 36⁄  is the value to maximize 

the left-hand side of the inequality and, then, 625 72⁄ � 11  is 

confirmed.                                     Q. E. D. 

 

Substituting equation (B6) in equation (B3), we get 

�� � 131
36 � 49�

12�1 � � � ���. 

Solving �� � 0, the following solution is obtained.7 

� � 1
131 �139 � 12√15�.����7� 

Further, �� is a monotone decreasing function of � in the range 
�0,1� because 

���
�� � � 49�1 � ���

12�1 � � � ���� � 0.����8� 

From the results in equations (B7) and (B8), the sufficient 

condition for realizing �� � 0 shows 

� � 1
131 �139 � 12√15�. 

Next, we investigate �� . Differentiating equation (B4) with 

respect to �, we get 

���
�� � �5�1 � 2�� � ��14�1 � 2��� � 27���1 � � � ����.����9� 

Second order condition can be computed as 

����
��� � 14�1 � 2�� � 54���1 � � � ���.����10� 

From equation (B9), we find that the following value for satisfying 

��� ��⁄ � 0. 

� � 7�1 � 2��� � √�
27��1 � � � ��� ����11� 

where 
� � 49 � ���135 � ��61 � 135� � 74����.����12� 

We find that equation (B11) minimizes ��  because 

���� ��� � 2√Δ � 0⁄ . Before explaining the characteristics of ��, 
the following lemma is indicated. 

 

Lemma B2: Equation (B11) always exists in the range �0,1�. 
 

Proof: 

In order to completely prove the lemma B2, three kinds of 

proofs must be combined. 

The first proof is that the value of equation (B11) is not 

imaginary. This proof is equivalent to proving � � 0 . From 

equation (B12), � is a fourth-order function of �. Differentiating 

� with respect to �, we get 

��
�� � �296�� � 405�� � 122� � 135.����13� 
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Further, second order condition is 

���
��� � ������ � �10� � 1�������1�� 

There are three solutions to satisfy �� ��⁄ � 0. By using equation 

(B13), we find that � � �0�5�77,� � 0�5��1, and � � 1����� by 

Mathematica. Then, � � 0�5��1 is the only solution in the range 
�0,1� . Substituting � � 0�5��1  in equation (B14), we find 

�01�5�1 � 0. This means that � � 0�5��1 realizes the minimum 

value of � in the range �0,1�. Thus, it is sufficient to confirm that 

� is strictly positive when � � 0�5��1. Substituting � � 0�5��1 

in equation (B12), we find � � �����7 � 0. Thus, we know that 

the value of equation (B11) is not imaginary. 

   The second proof is that equation (B11) is always satisfied by 

� � 0. It is sufficient to confirm that the numerator in equation 

(B11) is strictly positive because the denominator in equation 

(B11) is always strictly positive. We already know that � � 0�5��1 

is the unique value that realizes the minimum value of � in the 

range �0,1�. Thus, either � � 0 or � � 1 realizes the maximum 

value of � in the range �0,1�. Substituting � � 0 and � � 1 in 

equation (B12) gives � � �� and � � ��, respectively. Thus, we 

find � � 0  realizes the maximum value of � . In contrast, 

7�1 � ���� in equation (B11) is minimized when � � 0. Thus, the 

numerator in equation (B11) is minimized when � � 0 . 

Substituting � � 0 in the numerator of equation (B11) makes it 

zero. Thus, � � 0 is always satisfied because � � 0. 

   The third proof is that � � 1  is always satisfied. From 

equation (B11), the condition under which � � 1 is realized can 

be written as follows. 

�7��1 � � � ��� � �7�1 � ���� � √�� � 0�����15� 
Rearranging equation (B15), we get 

√� � ��7�� � �1�� � �7� � 7�����1�� 
If the right-hand side of equation (B16) is non-positive, equation 

(B16) is surely satisfied because √� � 0.8 Thus, only the case 

when the right-hand side of equation (B16) is strictly positive is 

confirmed. Because both sides in equation (B16) are strictly 

positive, the following inequality must be satisfied. 
� � ���7�� � �1�� � �7� � 7�������17� 

Thus, equation (B17) is equivalent to 
� � � � ���7�� � �1�� � �7� � 7�� � 0�����1�� 

Rearranging the left-hand side of equation (B18), we get 
� � �7��1 � ���1 � � � ����� � ��� � �7��������1�� 

In order to show � � 0 , we have to confirm Λ � � � ��� �
�7�� � 0. Λ is a convex quadratic function of � and it has one 

minimum value. Thus, it is sufficient to prove that the minimum 

value of Λ  is strictly positive. We easily find that � � 1� �7⁄  
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is strictly positive is confirmed. Because both sides 
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The first term on the right-hand side of equation (C2) becomes 

strictly positive when � � 4 5⁄ . However, the signs of the second 

and third terms are indeterminate. Thus, in general, we cannot find 

the sign of �. As in Appendix B, we check the condition under 

which � � 0 is realized. 

From equation (C2), regardless of the magnitudes of �� and 

��, � � 0 is always satisfied if the following two equations are 

satisfied when � � 4 5⁄ . 
�� � 3 � ���3 � 4� � ��3 � 4� � 5���� � 0, ��3� 

�� � 2 � ���2 � �� � ��2 � ��� � ���3 � 4� � 5����� � 0� ��4� 
When � � 4 5⁄ , satisfying equations (C3) and (C4) is the sufficient 

condition to realize � � 0. 

   First, consider equation (C3). We find that equation (C3) is a 

convex quadratic function of � and one minimum value exists 

because 3 � 4� � 5��  is always strictly positive. Thus, it is 

sufficient to check the condition for satisfying equation (C3) when 

the minimum value is realized. First order condition of equation 

(C3), with respect to � is given by 

���
�� � �2��2 � ��2 � 5���� ��5� 

From equation (C5), we know ��� ��⁄ � 0 is always satisfied 

when � � 2 3⁄ . Thus, we find that corner solution � � 1  is 

realized when �� 2 3⁄ .10 Substituting � � 1 in equation (C3), 

we get 
�� � 3 � �� � 4��� ���� 

Equation (C6) is a convex quadratic function of �. The minimum 

value of equation (C6) is realized when � � � �⁄ , but it is not 

consistent with �� 2 3⁄ . Thus, we know that equation (C6) is a 

monotone decreasing function of �  in the range �0, 2 3⁄ � and 

equation (C6) realizes its minimum value when � � 2 3⁄ . 

Substituting � � 2 3⁄  in equation (C6), we get �� � 1 �⁄ . Thus, 

we find �� � 0 is always satisfied when � � 2 3⁄ . 

In contrast, from equation (C5), we can derive the following 

interior solution for satisfying ��� ��⁄ � 0 when � � 2 3⁄ . 

� � 2�1 � ��
5� � ���� 

Substituting equation (C7) in equation (C3), we get 

�� � 1
5 �11 � ���23 � 11���� ���� 

Solving �� � 0  in equation (C8), the following solution is 

derived.11 

� � 1
22 �23 � 3√5��� 

Further, equation (C8) is a convex quadratic function of � and we 

find that ��� ��⁄ � 0 � � � 23 22⁄  is the minimum value of 

equation (C8). Thus, we find that equation (C8) is a monotone 

decreasing function of � in the range �2 3⁄ , 1�. From the above 

investigation, we find that �� � 0 is always realized when � �
�23 � 3√5� 22⁄ . Finally, we find that � � �23 � 3√5� 22⁄  is the 

condition in which �� � 0 is realized. 

   Next, consider ��. Differentiating equation (C4) with respect 

to �, we get 

���
�� � ���� � ��3� � ���2 � �� � 15������������ 

Second order condition is given by 

����
��� � 2���� � 4� � 15��������10� 

From equation (C9), we can derive the following value for � that 

satisfies ��� ��⁄ � 0. 

� � 4�2 � �� � √�2� � �4� � 2���
15� �����11� 

Equation (C11) is a candidate for realizing the minimum value of 

equation (C4) because ���� ��� � 2��√�2� � �4� � 2��� � 0⁄ . 

In relation to equation (C11), we firstly prove the following 

lemma. 

 

Lemma C1: Equation (C11) is always strictly positive if equation 

(C11) is real. 

 

Proof: 

It is clear that the denominator of equation (C11) is always 

strictly positive. Thus, we only check the sign of the numerator of 

equation (C11). �2� � �4� � 2���  is a concave quadratic 

function of � and it has one maximum value.12 The maximum 

value of �2� � �4� � 2��� is realized when � � 32 2�⁄ , but it is 

beyond the range �0,1� . Thus, the corner solution � � 1  is 

realized and it provides the maximum value of �2� � �4� � 2���. 
Then, substituting � � 1  in √�2� � �4� � 2��� , we find that 

√�2� � �4� � 2��� � 3 and it is always smaller than 4�2 � ��. 
Thus, the numerator of equation (C11) is always strictly positive if 

equation (C11) is real.                             Q. E. D. 
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�23 � 3√5� 22⁄ . Finally, we find that � � �23 � 3√5� 22⁄  is the 

condition in which �� � 0 is realized. 

   Next, consider ��. Differentiating equation (C4) with respect 
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�� � ���� � ��3� � ���2 � �� � 15������������ 

Second order condition is given by 
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From equation (C9), we can derive the following value for � that 
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equation (C4) because ���� ��� � 2��√�2� � �4� � 2��� � 0⁄ . 

In relation to equation (C11), we firstly prove the following 

lemma. 
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(C11) is real. 

 

Proof: 
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function of � and it has one maximum value.12 The maximum 

value of �2� � �4� � 2��� is realized when � � 32 2�⁄ , but it is 
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Proof: 

It is clear that the denominator of equation (C11) is always 

strictly positive. Thus, we only check the sign of the numerator of 
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function of � and it has one maximum value.12 The maximum 
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when n≥2/3.

Substituting equation (C7) in equation (C3), we get
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derived.11
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However, we notice that there are two possible 

situations in which equation (C11) does not realize the 

minimum value of equation (C4). The first possibility is 
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From equation (C12), we know that equation (C11) 

becomes real only if (32-3√30)/29<n<(32+3√30)/29 
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The second possibility is that the value of equation 
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related to the following lemma.

Proof : 
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The condition in which γ<1 realizes the minimum value 

of equation (C4) is equivalent to s>0 and vice versa. First 
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Lemma C2 : In case n∈[((32-3√30)/29,3/5), γ=1 
realizes the minimum value of equation (C4). In 
contrast, when n ≥ 3/5, equation (C11) realizes the 
minimum value of equation (C4).

Lemma C1: Equation (C11) is always strictly positive if 
equation (C11) is real.
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strictly positive. Thus, we only check the sign of the numerator of 
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function of � and it has one maximum value.12 The maximum 
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consistent with �� 2 3⁄ . Thus, we know that equation (C6) is a 
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we find �� � 0 is always satisfied when � � 2 3⁄ . 
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Solving �� � 0  in equation (C8), the following solution is 

derived.11 
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Further, equation (C8) is a convex quadratic function of � and we 

find that ��� ��⁄ � 0 � � � 23 22⁄  is the minimum value of 

equation (C8). Thus, we find that equation (C8) is a monotone 
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equation (C4) because ���� ��� � 2��√�2� � �4� � 2��� � 0⁄ . 

In relation to equation (C11), we firstly prove the following 

lemma. 

 

Lemma C1: Equation (C11) is always strictly positive if equation 

(C11) is real. 

 

Proof: 

It is clear that the denominator of equation (C11) is always 

strictly positive. Thus, we only check the sign of the numerator of 

equation (C11). �2� � �4� � 2���  is a concave quadratic 

function of � and it has one maximum value.12 The maximum 

value of �2� � �4� � 2��� is realized when � � 32 2�⁄ , but it is 

beyond the range �0,1� . Thus, the corner solution � � 1  is 

realized and it provides the maximum value of �2� � �4� � 2���. 
Then, substituting � � 1  in √�2� � �4� � 2��� , we find that 

√�2� � �4� � 2��� � 3 and it is always smaller than 4�2 � ��. 
Thus, the numerator of equation (C11) is always strictly positive if 
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However, we notice that there are two possible situations in 

which equation (C11) does not realize the minimum value of 

equation (C4). The first possibility is that the value of equation 

(C11) becomes imaginary when �2� � �4� � 29�� � 0 . By 

solving �2� � �4� � 29�� � 0, we get 

� � 1
29 �32 � 3√30������12� 

From equation (C12), we know that equation (C11) becomes real 

only if �32 � 3√30� 29⁄ � � � �32 � 3√30� 29⁄  because �2� �
�4� � 29�� is a concave quadratic function of �. Thus, equation 

(C11) is imaginary when � � �32 � 3√30� 29⁄  because 

�32 � 3√30� 29⁄ � 1 � �32 � 3√30� 29⁄ . In the case of � �
�32 � 3√30� 29⁄ , equation (C9) is always negative because 

equation (C11) is imaginary and equation (C9) is a concave 

quadratic function of � . Thus, � � 1  becomes the minimum 

value of equation (C4) in the case of � � �32 � 3√30� 29⁄ . 

   The second possibility is that the value of equation (C11) 

might be more than one if � � �32 � 3√30� 29⁄ , which is related 

to the following lemma. 

 

Lemma C2: In case � � ��32 � 3√30� 29⁄ , 3 5⁄ �, � � 1 realizes 

the minimum value of equation (C4). In contrast, when � � 3 5⁄ , 

equation (C11) realizes the minimum value of equation (C4). 

 

Proof:  
By using equation (C11), the following function is introduced. 

� � 15� � �4�2 � �� � ��2� � �4� � 29��������13� 
The condition in which � � 1  realizes the minimum value of 

equation (C4) is equivalent to � � 0 and vice versa. First order 

condition of equation (C13), with respect to �, is 

��
�� � 11 � 32 � 29�

√�2� � �4� � 29�� � 0�����14� 

By solving equation (C14), we get 

� � 1�0 � 33√5
145 �����15� 

Second order condition can be computed as 
���
��� � � 270

��2� � �4� � 29�����
�����1�� 

Substituting equation (C15) to equation (C16), we get 

���
��� � �50√5 � 0�����17� 

Thus, we find that equation (C13) is maximized when � �
�1�0 � 33√5� 145⁄ . Then, we find that �  is a monotone 

increasing function of �  in the range �0,1�  because � �
�1�0 � 33√5� 145⁄  is more than one. 

   By using equation (C13), the solution of � � 0 can be shown 

to be � � 3 5⁄ . Thus, � � 0 � � � 1  is satisfied when � �
��32 � 3√30� 29⁄ , 3 5⁄ � . In this case, the corner solution � � 1 

realizes the minimum value of equation (C4). In contrast, � � 0 �
� � 1  is satisfied when � � 3 5⁄ . In this case, equation (C11) 

realizes the minimum value of equation (C4).          Q. E. D.      

 

By summarizing the above discussion, we conclude that � �
1 realizes the minimum value of equation (C4) when � � 3 5⁄ , 

while equation (C11) realizes the minimum value of equation (C4) 

when � � 3 5⁄ . 

   First, consider the case of � � 3 5⁄ . Substituting � � 1  to 

equation (C4), we find 
�� � 2�1 � ����1 � 2�������1�� 

From equation (C18), we know that �� � 0 is realized when � �
1 2⁄ , while �� � 0 is realized when � � �1 2⁄ , 3 5⁄ �. 
   Next, consider the case when � � 3 5⁄ . Substituting equation 

(C11) in equation (C4), �� can be depicted by Mathematica, as 

shown in Figure C1.13  From Figure C1, we know �� � 0  is 

always satisfied when � � 3 5⁄ . Thus, when � � �0,1�, we find 

� � 1 2⁄  is the condition whereby �� � 0 is always realized. 
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The first term on the right-hand side of equation (C2) becomes 

strictly positive when � � 4 5⁄ . However, the signs of the second 

and third terms are indeterminate. Thus, in general, we cannot find 

the sign of �. As in Appendix B, we check the condition under 

which � � 0 is realized. 

From equation (C2), regardless of the magnitudes of �� and 

��, � � 0 is always satisfied if the following two equations are 

satisfied when � � 4 5⁄ . 
�� � 3 � ���3 � 4� � ��3 � 4� � 5���� � 0, ��3� 

�� � 2 � ���2 � �� � ��2 � ��� � ���3 � 4� � 5����� � 0� ��4� 
When � � 4 5⁄ , satisfying equations (C3) and (C4) is the sufficient 

condition to realize � � 0. 

   First, consider equation (C3). We find that equation (C3) is a 

convex quadratic function of � and one minimum value exists 

because 3 � 4� � 5��  is always strictly positive. Thus, it is 

sufficient to check the condition for satisfying equation (C3) when 

the minimum value is realized. First order condition of equation 

(C3), with respect to � is given by 

���
�� � �2��2 � ��2 � 5���� ��5� 

From equation (C5), we know ��� ��⁄ � 0 is always satisfied 

when � � 2 3⁄ . Thus, we find that corner solution � � 1  is 

realized when �� 2 3⁄ .10 Substituting � � 1 in equation (C3), 

we get 
�� � 3 � �� � 4��� ���� 

Equation (C6) is a convex quadratic function of �. The minimum 

value of equation (C6) is realized when � � � �⁄ , but it is not 

consistent with �� 2 3⁄ . Thus, we know that equation (C6) is a 

monotone decreasing function of �  in the range �0, 2 3⁄ � and 

equation (C6) realizes its minimum value when � � 2 3⁄ . 

Substituting � � 2 3⁄  in equation (C6), we get �� � 1 �⁄ . Thus, 

we find �� � 0 is always satisfied when � � 2 3⁄ . 

In contrast, from equation (C5), we can derive the following 

interior solution for satisfying ��� ��⁄ � 0 when � � 2 3⁄ . 

� � 2�1 � ��
5� � ���� 

Substituting equation (C7) in equation (C3), we get 

�� � 1
5 �11 � ���23 � 11���� ���� 

Solving �� � 0  in equation (C8), the following solution is 

derived.11 

� � 1
22 �23 � 3√5��� 

Further, equation (C8) is a convex quadratic function of � and we 

find that ��� ��⁄ � 0 � � � 23 22⁄  is the minimum value of 

equation (C8). Thus, we find that equation (C8) is a monotone 

decreasing function of � in the range �2 3⁄ , 1�. From the above 

investigation, we find that �� � 0 is always realized when � �
�23 � 3√5� 22⁄ . Finally, we find that � � �23 � 3√5� 22⁄  is the 

condition in which �� � 0 is realized. 

   Next, consider ��. Differentiating equation (C4) with respect 

to �, we get 

���
�� � ���� � ��3� � ���2 � �� � 15������������ 

Second order condition is given by 

����
��� � 2���� � 4� � 15��������10� 

From equation (C9), we can derive the following value for � that 

satisfies ��� ��⁄ � 0. 

� � 4�2 � �� � √�2� � �4� � 2���
15� �����11� 

Equation (C11) is a candidate for realizing the minimum value of 

equation (C4) because ���� ��� � 2��√�2� � �4� � 2��� � 0⁄ . 

In relation to equation (C11), we firstly prove the following 

lemma. 

 

Lemma C1: Equation (C11) is always strictly positive if equation 

(C11) is real. 

 

Proof: 

It is clear that the denominator of equation (C11) is always 

strictly positive. Thus, we only check the sign of the numerator of 

equation (C11). �2� � �4� � 2���  is a concave quadratic 

function of � and it has one maximum value.12 The maximum 

value of �2� � �4� � 2��� is realized when � � 32 2�⁄ , but it is 

beyond the range �0,1� . Thus, the corner solution � � 1  is 

realized and it provides the maximum value of �2� � �4� � 2���. 
Then, substituting � � 1  in √�2� � �4� � 2��� , we find that 

√�2� � �4� � 2��� � 3 and it is always smaller than 4�2 � ��. 
Thus, the numerator of equation (C11) is always strictly positive if 

equation (C11) is real.                             Q. E. D. 
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investigation, we find that �� � 0 is always realized when � �
�23 � 3√5� 22⁄ . Finally, we find that � � �23 � 3√5� 22⁄  is the 

condition in which �� � 0 is realized. 

   Next, consider ��. Differentiating equation (C4) with respect 

to �, we get 

���
�� � ���� � ��3� � ���2 � �� � 15������������ 

Second order condition is given by 

����
��� � 2���� � 4� � 15��������10� 

From equation (C9), we can derive the following value for � that 

satisfies ��� ��⁄ � 0. 

� � 4�2 � �� � √�2� � �4� � 2���
15� �����11� 

Equation (C11) is a candidate for realizing the minimum value of 

equation (C4) because ���� ��� � 2��√�2� � �4� � 2��� � 0⁄ . 

In relation to equation (C11), we firstly prove the following 

lemma. 

 

Lemma C1: Equation (C11) is always strictly positive if equation 

(C11) is real. 

 

Proof: 

It is clear that the denominator of equation (C11) is always 

strictly positive. Thus, we only check the sign of the numerator of 

equation (C11). �2� � �4� � 2���  is a concave quadratic 

function of � and it has one maximum value.12 The maximum 

value of �2� � �4� � 2��� is realized when � � 32 2�⁄ , but it is 

beyond the range �0,1� . Thus, the corner solution � � 1  is 

realized and it provides the maximum value of �2� � �4� � 2���. 
Then, substituting � � 1  in √�2� � �4� � 2��� , we find that 

√�2� � �4� � 2��� � 3 and it is always smaller than 4�2 � ��. 
Thus, the numerator of equation (C11) is always strictly positive if 

equation (C11) is real.                             Q. E. D. 
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Second order condition can be computed as

Substituting equation (C15) to equation (C16), we get

Thus, we find that equation (C13) is maximized when 

n=(160+33√5)/145. Then, we find that s is a monotone 

increasing function of n in the range (0,1) because 

n=(160+33√5)/145 is more than one.

By using equation (C13), the solution of s=0 can be 

shown to be n=3/5. Thus, s<0⇒γ>1 is satisfied when n

∈[(32-3√30)/29,3/5). In this case, the corner solution γ=1 

realizes the minimum value of equation (C4). In contrast, 

s≥0⇒γ≤1 is satisfied when n≥3/5. In this case, equation 

(C11) realizes the minimum value of equation (C4).

Q. E. D.

By summarizing the above discussion, we conclude 

that γ=1 realizes the minimum value of equation (C4) 

when n<3/5, while equation (C11) realizes the minimum 

value of equation (C4) when n≥3/5.

First, consider the case of n<3/5. Substituting γ=1 

to equation (C4), we find

From equation (C18), we know that h3≥0 is realized when 

n<1/2, while h3<0 is realized when n∈(1/2,3/5).

Next, consider the case when n ≥ 3/5. Substituting 

equation (C11) in equation (C4), h3 can be depicted by 

Mathematica, as shown in Figure C1.13  From Figure C1, 

we know h3<0 is always satisfied when n ≥ 3/5. Thus, 

when n∈(0,1), we find n<1/2 is the condition whereby 

h3>0 is always realized.

In the end, we find that equations (C3) and (C4) are 

always strictly positive when n<1/2 because 1/2<(32- 

3√30)/29. 

Finally, we know that both n<1/2 and γ<4/5 are 

sufficient conditions for realizing ∂f */∂γ>0.
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However, we notice that there are two possible situations in 

which equation (C11) does not realize the minimum value of 

equation (C4). The first possibility is that the value of equation 

(C11) becomes imaginary when �2� � �4� � 29�� � 0 . By 

solving �2� � �4� � 29�� � 0, we get 

� � 1
29 �32 � 3√30������12� 

From equation (C12), we know that equation (C11) becomes real 

only if �32 � 3√30� 29⁄ � � � �32 � 3√30� 29⁄  because �2� �
�4� � 29�� is a concave quadratic function of �. Thus, equation 

(C11) is imaginary when � � �32 � 3√30� 29⁄  because 

�32 � 3√30� 29⁄ � 1 � �32 � 3√30� 29⁄ . In the case of � �
�32 � 3√30� 29⁄ , equation (C9) is always negative because 

equation (C11) is imaginary and equation (C9) is a concave 

quadratic function of � . Thus, � � 1  becomes the minimum 

value of equation (C4) in the case of � � �32 � 3√30� 29⁄ . 

   The second possibility is that the value of equation (C11) 

might be more than one if � � �32 � 3√30� 29⁄ , which is related 

to the following lemma. 

 

Lemma C2: In case � � ��32 � 3√30� 29⁄ , 3 5⁄ �, � � 1 realizes 

the minimum value of equation (C4). In contrast, when � � 3 5⁄ , 

equation (C11) realizes the minimum value of equation (C4). 

 

Proof:  
By using equation (C11), the following function is introduced. 

� � 15� � �4�2 � �� � ��2� � �4� � 29��������13� 
The condition in which � � 1  realizes the minimum value of 

equation (C4) is equivalent to � � 0 and vice versa. First order 

condition of equation (C13), with respect to �, is 

��
�� � 11 � 32 � 29�

√�2� � �4� � 29�� � 0�����14� 

By solving equation (C14), we get 

� � 1�0 � 33√5
145 �����15� 

Second order condition can be computed as 
���
��� � � 270

��2� � �4� � 29�����
�����1�� 

Substituting equation (C15) to equation (C16), we get 

���
��� � �50√5 � 0�����17� 

Thus, we find that equation (C13) is maximized when � �
�1�0 � 33√5� 145⁄ . Then, we find that �  is a monotone 

increasing function of �  in the range �0,1�  because � �
�1�0 � 33√5� 145⁄  is more than one. 

   By using equation (C13), the solution of � � 0 can be shown 

to be � � 3 5⁄ . Thus, � � 0 � � � 1  is satisfied when � �
��32 � 3√30� 29⁄ , 3 5⁄ � . In this case, the corner solution � � 1 

realizes the minimum value of equation (C4). In contrast, � � 0 �
� � 1  is satisfied when � � 3 5⁄ . In this case, equation (C11) 

realizes the minimum value of equation (C4).          Q. E. D.      

 

By summarizing the above discussion, we conclude that � �
1 realizes the minimum value of equation (C4) when � � 3 5⁄ , 

while equation (C11) realizes the minimum value of equation (C4) 

when � � 3 5⁄ . 

   First, consider the case of � � 3 5⁄ . Substituting � � 1  to 

equation (C4), we find 
�� � 2�1 � ����1 � 2�������1�� 

From equation (C18), we know that �� � 0 is realized when � �
1 2⁄ , while �� � 0 is realized when � � �1 2⁄ , 3 5⁄ �. 
   Next, consider the case when � � 3 5⁄ . Substituting equation 

(C11) in equation (C4), �� can be depicted by Mathematica, as 

shown in Figure C1.13  From Figure C1, we know �� � 0  is 

always satisfied when � � 3 5⁄ . Thus, when � � �0,1�, we find 

� � 1 2⁄  is the condition whereby �� � 0 is always realized. 

 

 
 

Figure C1: The function form of �� when � � 3 5⁄  

 

In the end, we find that equations (C3) and (C4) are always 

strictly positive when � � 1 2⁄  because 1 2⁄ � �32 � 3√30� 29⁄ .  
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However, we notice that there are two possible situations in 

which equation (C11) does not realize the minimum value of 
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(C11) becomes imaginary when �2� � �4� � 29�� � 0 . By 

solving �2� � �4� � 29�� � 0, we get 
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From equation (C12), we know that equation (C11) becomes real 

only if �32 � 3√30� 29⁄ � � � �32 � 3√30� 29⁄  because �2� �
�4� � 29�� is a concave quadratic function of �. Thus, equation 
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�32 � 3√30� 29⁄ , equation (C9) is always negative because 

equation (C11) is imaginary and equation (C9) is a concave 

quadratic function of � . Thus, � � 1  becomes the minimum 

value of equation (C4) in the case of � � �32 � 3√30� 29⁄ . 

   The second possibility is that the value of equation (C11) 

might be more than one if � � �32 � 3√30� 29⁄ , which is related 

to the following lemma. 

 

Lemma C2: In case � � ��32 � 3√30� 29⁄ , 3 5⁄ �, � � 1 realizes 

the minimum value of equation (C4). In contrast, when � � 3 5⁄ , 

equation (C11) realizes the minimum value of equation (C4). 

 

Proof:  
By using equation (C11), the following function is introduced. 

� � 15� � �4�2 � �� � ��2� � �4� � 29��������13� 
The condition in which � � 1  realizes the minimum value of 

equation (C4) is equivalent to � � 0 and vice versa. First order 

condition of equation (C13), with respect to �, is 

��
�� � 11 � 32 � 29�

√�2� � �4� � 29�� � 0�����14� 

By solving equation (C14), we get 

� � 1�0 � 33√5
145 �����15� 

Second order condition can be computed as 
���
��� � � 270

��2� � �4� � 29�����
�����1�� 

Substituting equation (C15) to equation (C16), we get 

���
��� � �50√5 � 0�����17� 

Thus, we find that equation (C13) is maximized when � �
�1�0 � 33√5� 145⁄ . Then, we find that �  is a monotone 

increasing function of �  in the range �0,1�  because � �
�1�0 � 33√5� 145⁄  is more than one. 

   By using equation (C13), the solution of � � 0 can be shown 

to be � � 3 5⁄ . Thus, � � 0 � � � 1  is satisfied when � �
��32 � 3√30� 29⁄ , 3 5⁄ � . In this case, the corner solution � � 1 

realizes the minimum value of equation (C4). In contrast, � � 0 �
� � 1  is satisfied when � � 3 5⁄ . In this case, equation (C11) 

realizes the minimum value of equation (C4).          Q. E. D.      

 

By summarizing the above discussion, we conclude that � �
1 realizes the minimum value of equation (C4) when � � 3 5⁄ , 

while equation (C11) realizes the minimum value of equation (C4) 

when � � 3 5⁄ . 

   First, consider the case of � � 3 5⁄ . Substituting � � 1  to 

equation (C4), we find 
�� � 2�1 � ����1 � 2�������1�� 

From equation (C18), we know that �� � 0 is realized when � �
1 2⁄ , while �� � 0 is realized when � � �1 2⁄ , 3 5⁄ �. 
   Next, consider the case when � � 3 5⁄ . Substituting equation 

(C11) in equation (C4), �� can be depicted by Mathematica, as 

shown in Figure C1.13  From Figure C1, we know �� � 0  is 

always satisfied when � � 3 5⁄ . Thus, when � � �0,1�, we find 

� � 1 2⁄  is the condition whereby �� � 0 is always realized. 

 

 
 

Figure C1: The function form of �� when � � 3 5⁄  
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However, we notice that there are two possible situations in 

which equation (C11) does not realize the minimum value of 

equation (C4). The first possibility is that the value of equation 

(C11) becomes imaginary when �2� � �4� � 29�� � 0 . By 

solving �2� � �4� � 29�� � 0, we get 

� � 1
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From equation (C12), we know that equation (C11) becomes real 

only if �32 � 3√30� 29⁄ � � � �32 � 3√30� 29⁄  because �2� �
�4� � 29�� is a concave quadratic function of �. Thus, equation 

(C11) is imaginary when � � �32 � 3√30� 29⁄  because 

�32 � 3√30� 29⁄ � 1 � �32 � 3√30� 29⁄ . In the case of � �
�32 � 3√30� 29⁄ , equation (C9) is always negative because 

equation (C11) is imaginary and equation (C9) is a concave 

quadratic function of � . Thus, � � 1  becomes the minimum 

value of equation (C4) in the case of � � �32 � 3√30� 29⁄ . 

   The second possibility is that the value of equation (C11) 

might be more than one if � � �32 � 3√30� 29⁄ , which is related 

to the following lemma. 

 

Lemma C2: In case � � ��32 � 3√30� 29⁄ , 3 5⁄ �, � � 1 realizes 

the minimum value of equation (C4). In contrast, when � � 3 5⁄ , 
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By using equation (C11), the following function is introduced. 
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   By using equation (C13), the solution of � � 0 can be shown 
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��32 � 3√30� 29⁄ , 3 5⁄ � . In this case, the corner solution � � 1 

realizes the minimum value of equation (C4). In contrast, � � 0 �
� � 1  is satisfied when � � 3 5⁄ . In this case, equation (C11) 

realizes the minimum value of equation (C4).          Q. E. D.      

 

By summarizing the above discussion, we conclude that � �
1 realizes the minimum value of equation (C4) when � � 3 5⁄ , 

while equation (C11) realizes the minimum value of equation (C4) 

when � � 3 5⁄ . 

   First, consider the case of � � 3 5⁄ . Substituting � � 1  to 

equation (C4), we find 
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From equation (C18), we know that �� � 0 is realized when � �
1 2⁄ , while �� � 0 is realized when � � �1 2⁄ , 3 5⁄ �. 
   Next, consider the case when � � 3 5⁄ . Substituting equation 

(C11) in equation (C4), �� can be depicted by Mathematica, as 

shown in Figure C1.13  From Figure C1, we know �� � 0  is 

always satisfied when � � 3 5⁄ . Thus, when � � �0,1�, we find 

� � 1 2⁄  is the condition whereby �� � 0 is always realized. 
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However, we notice that there are two possible situations in 

which equation (C11) does not realize the minimum value of 

equation (C4). The first possibility is that the value of equation 

(C11) becomes imaginary when �2� � �4� � 29�� � 0 . By 

solving �2� � �4� � 29�� � 0, we get 

� � 1
29 �32 � 3√30������12� 

From equation (C12), we know that equation (C11) becomes real 

only if �32 � 3√30� 29⁄ � � � �32 � 3√30� 29⁄  because �2� �
�4� � 29�� is a concave quadratic function of �. Thus, equation 

(C11) is imaginary when � � �32 � 3√30� 29⁄  because 

�32 � 3√30� 29⁄ � 1 � �32 � 3√30� 29⁄ . In the case of � �
�32 � 3√30� 29⁄ , equation (C9) is always negative because 

equation (C11) is imaginary and equation (C9) is a concave 

quadratic function of � . Thus, � � 1  becomes the minimum 

value of equation (C4) in the case of � � �32 � 3√30� 29⁄ . 

   The second possibility is that the value of equation (C11) 

might be more than one if � � �32 � 3√30� 29⁄ , which is related 

to the following lemma. 

 

Lemma C2: In case � � ��32 � 3√30� 29⁄ , 3 5⁄ �, � � 1 realizes 

the minimum value of equation (C4). In contrast, when � � 3 5⁄ , 

equation (C11) realizes the minimum value of equation (C4). 

 

Proof:  
By using equation (C11), the following function is introduced. 

� � 15� � �4�2 � �� � ��2� � �4� � 29��������13� 
The condition in which � � 1  realizes the minimum value of 
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condition of equation (C13), with respect to �, is 
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�� � 11 � 32 � 29�

√�2� � �4� � 29�� � 0�����14� 

By solving equation (C14), we get 

� � 1�0 � 33√5
145 �����15� 

Second order condition can be computed as 
���
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��2� � �4� � 29�����
�����1�� 

Substituting equation (C15) to equation (C16), we get 

���
��� � �50√5 � 0�����17� 

Thus, we find that equation (C13) is maximized when � �
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�1�0 � 33√5� 145⁄  is more than one. 

   By using equation (C13), the solution of � � 0 can be shown 

to be � � 3 5⁄ . Thus, � � 0 � � � 1  is satisfied when � �
��32 � 3√30� 29⁄ , 3 5⁄ � . In this case, the corner solution � � 1 

realizes the minimum value of equation (C4). In contrast, � � 0 �
� � 1  is satisfied when � � 3 5⁄ . In this case, equation (C11) 

realizes the minimum value of equation (C4).          Q. E. D.      

 

By summarizing the above discussion, we conclude that � �
1 realizes the minimum value of equation (C4) when � � 3 5⁄ , 

while equation (C11) realizes the minimum value of equation (C4) 

when � � 3 5⁄ . 

   First, consider the case of � � 3 5⁄ . Substituting � � 1  to 
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always satisfied when � � 3 5⁄ . Thus, when � � �0,1�, we find 
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In the end, we find that equations (C3) and (C4) are always 
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(C11) becomes imaginary when �2� � �4� � 29�� � 0 . By 
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   The second possibility is that the value of equation (C11) 

might be more than one if � � �32 � 3√30� 29⁄ , which is related 

to the following lemma. 

 

Lemma C2: In case � � ��32 � 3√30� 29⁄ , 3 5⁄ �, � � 1 realizes 

the minimum value of equation (C4). In contrast, when � � 3 5⁄ , 

equation (C11) realizes the minimum value of equation (C4). 

 

Proof:  
By using equation (C11), the following function is introduced. 
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Thus, we find that equation (C13) is maximized when � �
�1�0 � 33√5� 145⁄ . Then, we find that �  is a monotone 

increasing function of �  in the range �0,1�  because � �
�1�0 � 33√5� 145⁄  is more than one. 
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to be � � 3 5⁄ . Thus, � � 0 � � � 1  is satisfied when � �
��32 � 3√30� 29⁄ , 3 5⁄ � . In this case, the corner solution � � 1 

realizes the minimum value of equation (C4). In contrast, � � 0 �
� � 1  is satisfied when � � 3 5⁄ . In this case, equation (C11) 

realizes the minimum value of equation (C4).          Q. E. D.      

 

By summarizing the above discussion, we conclude that � �
1 realizes the minimum value of equation (C4) when � � 3 5⁄ , 

while equation (C11) realizes the minimum value of equation (C4) 

when � � 3 5⁄ . 

   First, consider the case of � � 3 5⁄ . Substituting � � 1  to 

equation (C4), we find 
�� � 2�1 � ����1 � 2�������1�� 

From equation (C18), we know that �� � 0 is realized when � �
1 2⁄ , while �� � 0 is realized when � � �1 2⁄ , 3 5⁄ �. 
   Next, consider the case when � � 3 5⁄ . Substituting equation 

(C11) in equation (C4), �� can be depicted by Mathematica, as 

shown in Figure C1.13  From Figure C1, we know �� � 0  is 

always satisfied when � � 3 5⁄ . Thus, when � � �0,1�, we find 

� � 1 2⁄  is the condition whereby �� � 0 is always realized. 

 

 
 

Figure C1: The function form of �� when � � 3 5⁄  

 

In the end, we find that equations (C3) and (C4) are always 

strictly positive when � � 1 2⁄  because 1 2⁄ � �32 � 3√30� 29⁄ .  
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1 Winter (2013) is an excellent survey of the moral hazard in 
insurance economics. 
2 The website of JTSA is http://www.jtsa.or.jp/ (only in Japanese; 
last accessed on August 14, 2019). 
3 By definition, ��� never appears in this model. 
4 Second order conditions are always satisfied because 

���� �����⁄ � ��� � 0 , ���� �����⁄ � �1 � ���� ����⁄ �
0, and ���� �����⁄ � �� ����⁄ � 0. 

5 Second order condition is always satisfied because ��� ���⁄ �
������� ����∗����∗��� � 0. 
6 Proof of � � 0 is provided in Appendix A. 
7  Although there is another solution given by � �
�1�� � 1�√15� 1�1⁄ , it is not appropriate because � � 1. 

8 Actually, the right-hand side of equation (B16) becomes non-
positive when � is relatively large. 
9 ��  becomes a very complex function and it is impossible to 
derive the characteristics of �� by algebraic methods. 
10 In this discussion, the range � � �0,1� is used, regardless of the 
sign on the first term in the right-hand side of equation (C2). 
11  Although there is another solution given by � �
��� � �√5� ��⁄ , it is not appropriate because ��� � �√5� ��⁄ � 1. 
12 The possibility to realize an imaginary solution will be discussed 
in a later section. 
13 �� becomes a very complex function and it is impossible to 
derive the characteristics of �� by algebraic methods. 
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non-positive when γ is relatively large.
9 3 becomes a very complex function and it is impossible 

to derive the characteristics of 3 by algebraic methods.
10 In this discussion, the range γ∈[0,1] is used, regardless 

of the sign on the first term in the right-hand side of 

equation (C2).
11 Although there is another solution given by n=(23+ 

3√5)/22, it is not appropriate because (23+3√5)/22>1.
12 The possibility to realize an imaginary solution will be 

discussed in a later section.
13 h3 becomes a very complex function and it is impossible 

to derive the characteristics of h3 by algebraic methods.
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