^x 2 − コンパートメントモデルと見かけの酵素阻害活性を仮定した 薬物間相互作用の予測法の有用性についての検討

伊賀勝美

同志社女子大学 薬学部・医療薬学科 特別任用教授

Investigation into the Usefulness of 2-Compartment, Model-Assisted, Static Overall Inhibition Activity-Based Drug-Drug Interaction Prediction Methods

Katsumi Iga

Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences Department of Pharmaceutics, Doshisha Women's College of Liberal Arts, Special Appointment Professor

要旨

ラメルテオンとフルボキサミンとの併用により生じた異 常に大きな相互作用については、規制当局が推奨するいか なる方法を用いてしても、予測が困難であった(過小予測 となる)。その主な原因として、Well-stirredモデルを仮 定したこれまでの方法によれば、ラメルテオンのような肝 アベイラビリティ(F_h)が小さな薬物(Victim)におい ては、相互作用により生じるFhの増分を無視してしまう ことによるものであることが示された。Tube法がそれを 回避する最良の手段であることが示された。

相互作用の予測に際しては、これまでに生理学的モデル (PBPKモデル)を基本にした方法(多くのIn vitro試験か ら得られる特性をIn vivoへとbottom upしていく方法)が 推奨されてきたが、その結果、予測はますます複雑化し、 むつかしいものになってきており、世界の製薬研究者の悩 みの種となっているが、本研究により提案された方法(2-コンパートメント A_i,overall法: 2-Comp A_i,overall法)は非 常に単純なもので、着目する相互作用とその他の薬物の相 互作用との間でのデータの橋渡しを可能とする応用度の高 いものであることが、CYP1A2 およびCYP3A4が関与す る相互作用のシミュレーションを通じて示された。

本研究により提案された2-Comp A_i, overall法は今後のこの分野の研究を飛躍的に発展させるものと期待される。

はじめに

過去に本邦で起きたソルブジンと5-FUの併用による悲 惨な相互作用¹⁾が契機となり、現在においては、規制当局 の適切な指導の下で、世界のどの製薬会社においても、い ずれの新薬候補化合物に関しても、創薬および臨床開発の 段階から、相互作用に関する試験を実施し(*In vitro* 代謝 試験や臨床での相互作用試験)、その化合物が臨床使用さ れる段階においては、いかなる薬物間相互作用に対しても 万全を期すように努めている。

しかしIn vitro試験から予想される相互作用のすべてに、 臨床試験を実施することは不可能であり、大抵の場合はIn vitro データと少ない臨床試験データから、薬物動態学的 手法を駆使して、それを予測していく方策がとられ、規制 当局もそれを推奨している。

しかし相互作用の確実な予測法については、いまなお多 くの課題(表1)を残し、2012年に出されたFDAのガイ ダンス²⁾に照らしても、まだ完成には至っていないという のが実状である。

しかしながら、著者らが長年に亘り続けてきた薬物間相 互作用の予測法に関する研究により、³⁻⁶⁾それらの課題の 大部分が解決されて、現存する相互作用のデータベースを 活用することにより、最終的には、少ないデータから、着 目する開発候補化合物の相互作用(未知)を予測する方法を

表1 相互作用の予測における課題

(i)	相互作用による Victim の初回通過効果の減少
(ii)	阻害剤の濃度のダイナミック変化
(iii)	複数のCYP 分子種が関与する代謝
(iv)	消化管での初回通過効果
(v)	阻害活性を示す阻害剤の代謝物
(vi)	時間依存的な代謝阻害
(vii)	<i>In vitro-In vivo</i> 間での K _i 値の食い違い
(viii)	酵素とトランスポーターの両者が関与する相互作用

見出すことができた。そこでその経緯と、その方法の有用 性について、多角的に検証を行った結果について報告する。

背景

研究の発端

著者は武田薬品において臨床薬物動態解析を担当してい たときに(2002年ごろ)武田薬品が開発したラメルテオン (RAM:睡眠導入剤、メラトニン作動薬、代謝には CYP1A2が大きく関与し、部分的にはCYP2C19も関与す る、2006年に米国で発売)とフルボキサミン(FLV: CYP1A2およびCYP2C19の強力な阻害剤)の併用により、 世に例をみない異常に大きな相互作用が引起される現象に 遭遇した(著者自身もこの薬物の臨床での相互作用試験に 関わる;RAMの血中濃度のAUCが約130倍に上昇: AUCR = 130)。⁷⁾

図 1 RAM (Victim) とFLV (Perpetrator) の併用によ るRAMの血中濃度の異様な上昇

註:Victim:相互作用を受ける側の薬物;perpetrator:相互作 用を引き起こす側の薬物(Victimの代謝を阻害すること により相互作用を引き起こす場合には、代謝阻害剤に相 当)

しかしその相互作用の大きさについては、当時のいかな る方法をもってしても予測をすることは困難であった。例 えば肝抽出機構の一つWell-stirred (Ws)モデルを基本に したStatic法(阻害剤の濃度は常に一定と見なして解析す る方法)、⁸⁾あるいは阻害剤の濃度の時間変化を生理学的 モデル(PBPKモデル)に組み込んだDynamic法を用いて も、⁹⁾AUCRの予測値は高々2、3程度のものであった。 すなわちその相互作用の機構については我々が見出すまで は全く不明のまま、とりあえずは両者の併用は禁忌として、 臨床使用が許可され、現在に至っている。

相互作用により生じるVictimの初回通過効果の変化(減少)

著者は本学に移ってからは、その原因の解明を第1のテ ーマに掲げて研究を積み重ねてきたが、比較的早い段階に おいてAUCRがWsモデルを仮定した方法により過小に見 積もられることに気が付き大学紀要¹⁰⁾および年報¹¹⁾にお いて発表してきた(なお過小見積もりの原因としては他に も複数のものが挙げられる)。

ー般的に酵素阻害の強さ($A_{i, overall}$)は、阻害剤を作用 させたときの代謝クリアランス[$CL_{int}(+)$]に対する対照群 のクリアランス(CL_{int})の比で示され、さらにそれは、 阻害剤の酵素近傍における遊離形濃度(I_{u})を、遊離形を 基本にしたみかけの阻害定数($K_{iu, overall}$)で除した値に1 を加えたものとして表すことができる。

$$A_{i, \text{ overall}} = \frac{CL_{int}}{CL_{int}(+)} = 1 + \frac{I_u}{K_{iu, \text{ overall}}}$$
(1)

なお酵素阻害活性についてはA_iと表し、複数の酵素に対 する阻害を含めた場合の見かけの阻害活性をA_{i,overall}とし て表される。

一方でWsモデルを基本にした薬物速度論においては、 肝消失型の薬物の経口クリアランスは血中遊離形分率と代 謝クリアランスの積(fub x CL_{Int})で示され、

$$CL_{oral} = \frac{D_{oral}}{AUC_{oral}} = fu_b \times CL_{int}$$
(2)

相互作用により生じたVictim のAUCの上昇倍率 (AUCR) はA_{i.overall1}に等しくなる関係が導き出される。

$$AUCR = \frac{AUC_{oral}(+)}{AUC_{oral}} = \frac{CL_{int}}{CL_{int}(+)} = A_{i, overall}$$
(3)

しかし、Victimの F_h が小さくなるにつれ、それに依存 してAUCRは変化し、上記の関係は成り立たなくなる(特 にF_h <0.1のVictimで顕著)。

すなわちRAMのような肝アベイラビリティ(F_h=0.03) が極端に小さい、経口投与において初回通過効果を大きく 受ける薬物(Victim)に関しては、Wsモデルを仮定した 解析法では、相互作用によってF_hが大幅に増加するする 変化(逆に初回通過効果が大幅に減少する変化)を無視し、 結果的にはAUCRの過小見積に終わる致命的な欠陥がある。 なお現在までに報告されている相互作用の予測法のほとん どはこの問題を抱えていて、後に示すようにWs法に代わ る最良の方法としてはTube法が提案された。

材料と方法

2-Comp モデル

2-Compモデル(図2)は静脈内投与後血中濃度の時間 推移をbi-exponentialで当てはめる汎用モデルである。

静脈内投与および経口投与後の血中濃度はそれぞれ式4 および5のように表すことができる。

$$C_{b,iv}(t) = \left(\frac{D}{V_A}\right) \cdot \exp\left(-K_A \cdot t\right) + \left(\frac{D}{V_B}\right) \cdot \exp\left(-K_B \cdot t\right)$$
(4)

$$C_{b, \text{ oral}}(t) = F \cdot \left(\frac{D}{V_A}\right) \cdot \left(\frac{K_{ab}}{K_{ab} - K_A}\right) \cdot \left[\exp(-K_A \cdot t) - \exp(-K_{ab} \cdot t)\right] + F \cdot \left(\frac{D}{V_B}\right) \cdot \left(\frac{K_{ab}}{K_{ab} - K_B}\right) \cdot \left[\exp(-K_B \cdot t) - \exp(-K_{ab} \cdot t)\right]$$

$$(5)$$

なおD、Fおよび K_{ab} はそれぞれ投与量、バイオアベイラ ビリティ (F = F_a x F_h) および一次吸収速度定数を表す。 また K_A および K_B は一次消失速度定数を表し、 V_A および V_B は分布容積に関わるパラメータである。 K_A 、 K_B 、 V_A および V_B は静脈内投与におけるモデル非依存的なパラメ ータ[全身クリアランス (CL_{tot});中央コンパートメント の分布容積 (V_0);定常状態下の分布容積 (V_{dss});定常状 態に達するまでの分布に関する一次速度 (K_d)]を使って 表すことができる。

$$K_{A}, K_{B} = \frac{1}{2} \cdot \left[K_{d} + \frac{CL_{tot}}{V_{0}} \right] \pm \frac{1}{2} \cdot \sqrt{\left[K_{d} + \frac{CL_{tot}}{V_{0}} \right]^{2} - \frac{4 \cdot K_{d} \cdot CL_{tot}}{V_{dss}}}$$

$$(6)$$

$$\frac{1}{V_{A}} = \frac{1}{\left(K_{A} - K_{B}\right)} \cdot \left(\frac{K_{A}}{V_{0}} - \frac{K_{d}}{V_{dss}}\right)$$
(7)

$$\frac{1}{V_{B}} = \frac{1}{\left(K_{B} - K_{A}\right)} \cdot \left(\frac{K_{B}}{V_{0}} - \frac{K_{d}}{V_{dss}}\right)$$
(8)

したがって、静脈内投与後の血中濃度は、これらの4パ ラメータの値が分かれば、算出することができ、さらに K_{ab}が分かれば経口投与後の血中濃度が算出できる。

Tube モデルにより算出されるAUCRとA_{i,overall}

Tube モデルは図3に示すように肝入り口から出口にいたるまでの濃度変化は指数関数で現すことができ(式9および10)、肝臓中の平均血中濃度(C_{hb})は出口濃度に δ 倍した値として示すことができる(なおWsモデルにおいては、 C_{hb} は肝出口濃度に等しいと仮定する)。その結果、Tubeモデルを仮定して得られる相互作用の大きさ(AUCR)は式11に示される関係できまり、AUCRはVictimの F_h に依存して変わることが示される。

なお本報告においてはVictimおよびPerpetrator固有のパ ラメータについてはパラメータの前にそれぞれvおよびp を付して区別をする。一方両者により決まるパラメータに

図 2 2-Comp モデル

図3 Tube モデルを仮定した肝臓における血中薬物濃度の模式図

$$vF_{h} = \frac{vA_{e, \text{ oral}} \times vCL_{\text{oral}} + Q_{h}}{vCL_{\text{oral}} + Q_{h}} = exp \Bigg[-\frac{vfu_{b} \times vCL_{\text{int}}}{Q_{h}} \Bigg] \qquad (9)$$

$$vF_{h}(+) = exp\left\{-\frac{vfu_{b} \times vCL_{int}}{Q_{h} \times A_{i, overall}}\right\} = exp\left\{\frac{Ln(vF_{h})}{A_{i, overall}}\right\}$$
(10)

$$\begin{aligned} AUCR = & \left(\frac{vF_{h}(+)}{vF_{h}}\right) \times \left(\frac{1-vF_{h}}{1-vF_{h}(+)}\right) = \left(\frac{1}{vF_{h}}-1\right) \times \left[vF_{h}(+)-1\right]^{-1} \\ = & \left(\frac{1}{vF_{h}}-1\right) \times \left[exp\left\{-\frac{Ln(vF_{h})}{A_{i, overall}}\right\}-1\right]^{-1} \end{aligned}$$
(11)

ついては何も付けないで表す。

ところで血中濃度の計算には必須のCL_{tot}およびCL_{tot} (+)の値はF_a = 1を仮定した場合、肝消失型の薬物では経 ロクリアランスより求めることができる。

$$CL_{tot} = F_h \cdot CL_{oral} \tag{12}$$

$$CL_{tot}(+) = F_{h}(+) \cdot CL_{oral}(+) = F_{h}(+) \cdot \frac{CL_{oral}}{AUCR}$$
(13)

A_{i.overall}の決まり方(2つの方法)

前述したようにA_{i,overall}の値はAUCR、vF_hのおよび vA_{e,oral}(Victimの経口投与後の未変化体尿中排泄率)の 値を知ることにより、式14を用いて算出することができる。

$$\frac{1}{A_{i, \text{ overall}}} = \frac{1}{Ln(vF_{h})} \times \left[Ln \{AUCR \times (1 - vA_{e, \text{ oral}} \times vF_{h})\} - Ln \{(1 - vA_{e, \text{ oral}}) \times AUCR - 1 + \frac{1}{vF_{h}}\} \right]$$
(14)

さらにA_{i,overall}値はAUCRとは別に、阻害剤の各分子種に 対する阻害活性(pA_{i,CYP})とVictimの代謝クリアランス に対する各種CYP分子種の貢献度(vf_{m,CYP})によっても 式15を使って算出することができる。

$$\frac{1}{A_{i, \text{ overall}}} = \frac{vf_{m, \text{ CYP1A2}}}{pA_{i, \text{ CYP1A2}}} + \frac{vf_{m, \text{ CYP2C19}}}{pA_{i, \text{ CYP2C19}}} + \frac{vf_{m, \text{ CYP3A4}}}{pA_{i, \text{ CYP3A4}}} + vf_{m, \text{ nonCYP}}$$
(15)

 $vf_{\text{m},\,\text{CYP1A2}} + vf_{\text{m},\,\text{CYP2C19}} + vf_{\text{m},\,\text{CYP3A4}} + vf_{\text{m},\,\text{nonCYP}} = 1$

なおまたpA_{i,CYP}は阻害剤の濃度を各種CYP分子種に対す る阻害活性で除した値に1を加えたものとして求めること ができる(式1と同様の扱い)。

$$pA_{i, CYP} = 1 + \frac{I_u}{pK_{i, u, CYP}}$$
(16)

相互作用に対するシミュレーション法

以上の説明からも分かるようにシミュレーションの方法 としてはI_u値が時間とともに変化することを考慮に入れた Dynamic法 (SM_d) とI_u値として平均的な値 (定数) を用 いるStatic法が考えられ、またStatic法においてはA_{i,overall} 値をAUCRから求める方法 (SM₁) と $pA_{i,CYP}$ と $vf_{m,CYP}$ か ら求める方法 (SM₂) が考えられる。

既存の相互作用に関するデータベースからpA_{i,CYP}および vf_{m,CYP}を逐次決定していく方法

前述した複数のCYP分子種が関与する代謝に対する代 謝阻害の概念を基本にすると、相互作用の予測に必要な pA_{i,CYP}やvf_{m,CYP}を既存の相互作用のデータベースを利用 して、段階的に求めていくことができる(図4)。例えば ステップ1において、vFhが0.84の薬物AがCYP2C19で特 異的に代謝されるとして、またその薬物がCYP2C19のPM に投与された場合のAUCRの値が5.0であればAi, overallの 値は式14から4.5と計算され、また式15からfm.CYP2C19(A) の値が0.78と算出することができる(A_{i,CYP2C19(PM)} = 無 限大)。次のステップ(ステップ2)として、薬物Aが CYP2C19に対する特異的な阻害効果を示す薬物X(阻害 剤X)と併用投与して得られるAUCRの値(3.5)から Ai,overall値が3.2と求められる場合に、その阻害剤Xの pA_{i.CYP2C19(X)}の値は式15から8.8と算出することができる。 さらにvFhが0.8の薬物BがCYP2C19で特異的に代謝され るとして、その薬物が薬物Xと併用投与した場合のAUCR

図4 逐次法によるpA_{i,CYP}およびvf_{m,CYP}の決定と未知の相互作用を予測する方法

の値(2.0)から $A_{i,overall}$ 値が1.95と求められる場合に、 その薬物Bの $f_{m,CYP2C19}$ の値は0.55と算出することができ る(ステップ3)。また阻害剤Yの $pA_{i,CYP2C19}$ (=3.0)が 阻害剤Xと同様の方法(ステップ2)で求められていると したときに、薬物Bと阻害剤Yを併用した場合の $A_{i,overall}$ (B+Y)とAUCR(B+Y)の値は、それぞれ1.57および1.59 と算出することができて、SM2法により、最終目的 (Goal)とする血中濃度の上昇を予測することができる。

解析に用いた相互作用に関する文献データ

文献で報告されているRAMを初めとする各種CYP1A2 およびCYP2C19基質[ランソプラゾール (LAN);オメプ ラゾール (OME);S-メフェニトイン (MEP);テオフィ リン (THE);カフェイン (CAF);タシメルテオン (TAS);タクリン (TAC);チザニジン (TIZ);メラト ニン (MEL)]とFLVの相互作用 (表2)、さらにはミダ ゾラム (MDZ)をはじめとする各種CYP3A4[トリアゾ ラム (TRZ);リドカイン (LID);ゾピクロン (ZOP); キニジン (QUN);アルプラゾラム (ALP)]とアゾール 系抗菌薬を初めとするCYP3A4の強力な阻害剤 [ケトコナ ゾール (KTCZ);イトラコナゾール (ITCZ);フルコナ ゾール (FLCZ);クラリスロマイシン (CLM);エリスロ マイシン (ERT)] との併用により生じた相互作用のデー タを相互作用の予測法の検討に用いた。

結果および考察

RAMとFLVの併用における相互作用のシミュレーション

2-Comp Dynamic解析法は、阻害剤の血中濃度が時々 刻々変化して、それにつれてVictimの肝クリアランスも変 化して起きるDynamic DDIのシミュレーションに適用で きるものとして、検討を進めた結果、図5に示されるよう に、FLVの併用により生じたRAMの血中濃度の時間変化 をうまく再現できることが分かった。

なおこのDynamic法の特徴は、方法において述べたよう に文献情報として入手可能な動態パラメータ[分布特性 (V₀, V_{dss}, K_d)、経口クリアランス (CL_{oral})、吸収速度 定数 (K_a)、消化管粘膜での代謝を回避して吸収された割

Victim		フルボキサミン(FLV)	AUCR	vF_{h}
ランソプラゾール (LAN)	40 mg	25 mg BID	3.8	0.92
オメプラゾール (OME)	40 mg	25 mg BID	5.6	0.7
S-メフェニトイン (MEP)	100 mg	87.5 mg QD	9.9	0.31
テオフィリン (THE)	257 mg	100 mg QD	3.3	0.94
カフェイン(CAF)	250 mg	50 mg BID	13.7	0.93
タシメルテオン(TAS)	5 mg	50 mg QD	6.5	0.57
タクリン(TAC)	40 mg	100 mg QD	8.3	0.13
チザニジン(TIZ)	4 mg	50 mg BID	32.6	0.14
メラトニン(MEL)	5 mg	50 mg single	22.7	0.06
ラメルテオン(RAM)	16 mg	100 mg BID	128	0.03

表2 各種CYP1A2およびCYP2C19基質とFLVの併用における相互作用の報告例

図 5 RAMとFLVの併用における相互作用のシミュレーション(Dynamic法とStatic法の比較)

パネルA:FLVと併用した際のRAMの血中濃度の上昇のシミュレーション パネルB:FLVの肝臓中の血中遊離形濃度の時間推移のシミュレーション

合 ($F_a \ge F_g$)]を入力し、まずは相互作用の比較対照とし てのVictim単独投与後の血中濃度推移を十分にfittingさせ、 次いで阻害剤の血中濃度についても同様のfittingを行い、 別途報告している方法³⁾を用いてI_u(t)を計算し、最終的に は単一のパラメータである*In vivo* K_{iuoverall}値を微調節する ことにより [$A_{i,overall}(t) = 1 + I_u(t)/In vivo K_{iu,overall}$]、 Victim の血中濃度の上昇をシミュレーションするところ にあった (図5におけるSM_dに対応する)。ただし方法に おいて述べたようにこのI_u(t)あるいは $A_{i,overall}(t)$ の代わ りに、平均値(I_u および $A_{i,overall}$)を用いることでも(Static 法)、血中濃度のシミュレーションには大きな違いがない ことが確認された (図5におけるSM₁およびSM₂に対応す る)。最終的にはStatic 法であるSM₁とSM₂がより簡便で かつ有用性の高い方法として提案された。

各種CYP1A2およびCYP2C19基質とFLVとの併用におけ る相互作用のシミュレーション

6種類のCYP1A2基質(MEL、TIZ、TAC、TAS、 CAFおよびTHE)および2種類のCYP2C19基質(MEPお よびOME)とFLVとの併用における相互作用について SM_d、SM₁およびSM₂を基本としたシミュレーションの結 果を図6に示す。いずれの方法においても実際の相互作用 をうまくシミュレーションできることが確認された。

AUCRはVictimのFhの大小によって決まる原理(Tube モ デル)に基づく解析

相互作用の予測に際しWs法はAUCRを過小に見積る傾向にあり、それを解決する方法としてTube 法が最適であ

ることが確認された(AUCRと $A_{i,overall}$ および F_h の関係 は式14で示される)。そこで以下にその原理に基づき行っ た解析について説明する。まずFLVとの併用で比較的大 きな相互作用を引き起こす薬(Victim)はRAM以外にも 多数報告されていて、⁴⁾CYP1A2およびCYP2C19の両者の 基質[これら二つの分子種の寄与率を合わせると8割を超 える薬物]に着目すると、メラトニン(MEL)、チザニジ ン(TIZ)、カフェイン(CAF)等が挙げられる。

RAMを含め、それらのAUCRと $F_h \varepsilon$ "対"にして示すと、 (128, 0.032)、(22.7, 0.06)、(32.6, 0.14) および(8. 0, 0.94) となる(ただしFLVの投与量はTIZとCAFでは 100 mg QD、RAMではその2倍、MELではその半分とな る相違がある)。これらの数値を比較することからも AUCRはVictimの F_h が小さいほど大きくなることが容易 に想像された。

そこで、これらの対となる4組のデータをAUCRに関す る理論式(式14)に代入し、FLVの投与量(100 mg QD) におけるA_{i,overall}を見積もってみると、ほぼ類似した値 (10前後の値)が得られ、これらの相互作用の違いは、主 にはF_hの違いによるものであることが確認された。

さらにこれらの違いをより明確にするものとして、 F_h (+)/ F_h (Wsモデルではこの比は1で、併用時の F_h は非併 用時と変わらないことになる)に着目すると、RAMでは その値は約20 (F_h の0.032から0.65への変化に相当)とな り、Ws法においては、相互作用により増加するはずの F_h を無視し、結果的には相互作用を過小に評価してしまう欠 点を有していることが明確になった。

図 6 各種CYP1A2およびCYP2C19基質とFLVとの併用における相互作用のシミュレーション

図7 各種CYP1A2およびCYP2C19基質とFLVとの併用で見られた相互作用の比較解析 [K_{iu,overall} および F_h(+)/F_hの比較]

図8 In vitro およびIn vivoクリアランス間で見られるギャップによるKiu値の過大見積もりの可能性についての解析

AUCRを過小に見積もる別の要因(*In vitro* K_{i,u,overall}値に 含まれる誤差)

In vivo K_{i,u,overall}値は二つの方法(すなわちDynamic法 と Static 法)から見積もることができる。すなわち Dynamic法では、実際の相互作用におけるVictimの血中濃 度の変動を最もfitする条件でシミュレーションすることに より*In vivo* K_{i,u,overall}値が見積られる。一方Static 法で は、式14においてAUCRの値とVictim のF_hからA_{i,overall}値 を見積り、さらに、我々が見出した方法に基づいて(上 述)、阻害剤の血中濃度のAUCから肝細胞内の遊離形濃度 の平均値(I_u)を見積もり、そこから式16に基づき*In vivo* K_{i,u,overall}値間ではそれほど大きな差は見られるかっ た。しかし、これらの値を*In vitro* 試験で得られている K_{iu,overall}値と比較すると数十倍以上の差が見られた。す なわち*In vitro*の方が数十倍大きな値(阻害活性の過小見 積)を示すことがわかった。*In vitroとIn vivo*の間で見ら れるこのようなギャップについては、^{12.13)}以前より多く の研究者によって指摘されてきたところのものである。

In vitro 阻害活性が過小に見積もられる原因の解明

それではどのような原因で*In vitro* K_{i,u,overall} 値が*In vivo*値に比べ数十倍も大きくなるのかについては、我々が 解明するまでは全く不明であった。しかし種々の角度から、 そのギャップの原因を調べたところ、*In vitro*試験で使わ れるヒト肝ミクロソーム(HLM)には、精製過程で生じ るHLMの酸化分解産物(長鎖ポリ不飽和脂肪酸)が含ま れていて(それを完全に除去することは不可能)、それが 酵素活性を低下させていること、¹⁴⁾すなわちそれらの分 解物が酵素阻害的に作用して、Victimの正味の代謝クリア ランスのみならず阻害剤の阻害活性を過小に評価してしま うことがその後の我々の解析(図8)により明らかとなっ た。さらに $K_{i,u,overall}$ 値の過小評価の割合を定量的に評価 する方法(λ_{HLM} 法)を見出すことができた。

複数のCYP分子種が関与する相互作用の予測法

ファイザー社のObachらは¹⁵⁾武田薬品がFDAに提出し た申請データ(公開)に掲載されたRAMとFLVの併用に より生じた異常に大きな相互作用に着目し、彼ら独自で各 種の*In vitro*試験を実施し、*In vitro*からこの相互作用を予 測する試みを報告している。しかし彼の予測はあくまでも Ws法によるものであったため、予測には失敗しているが、 相互作用の予測における重要な原理を導いる。

すなわちRAMとFLVの併用で起きた相互作用は、 Victimの代謝において三つのCYP分子種(CYP1A2、 CYP2C19およびCYP3A4)が関与し(例えば、CYP1A2 の関与の割合はfm,CYP1A2で表される)、阻害剤がそれぞれ のCYP分子種に対し、異なる強度で阻害的に働き(例え ばCYP1A2に対する阻害活性はAi,CYP1A2で表される)引 き起こされる"複合"阻害による相互作用と位置付けて、そ の大きさを示す式15に類似の式を導いる。なお彼らの報告 によれば、消化管での初回通過効果などがなければ、その 相互作用の大きさが、AUCRに等しい(Wsモデル)と報 告しているが、我々の論文に従えば、それはAi,overallに相 当し、正式には式15のように示される。

この式は任意の阻害剤とVictimを併用することにより生 じる未知の相互作用を既知の相互作用から予測するための

表3 FLVのpAi,CYP値

Daily Dose	$pA_{i,CYP1A2}$	pA _{i,CYP2C19}	$pA_{i,CYP2D6}$	pA _{i,CYP3A4}
n x pD				
2 x 25 mg	9.5	6	1	1.3
1 x 100 mg	18	10	1	1.6
2 x 100 mg	35	20	1	2.3

重要な式となる。そこで、さらにRAMおよびそれ以外の VictimとFLVの相互作用の事例(18事例)を使ってFLV のA_{i,CYP}あるいはVictimのf_{m,CYP}を次節に示す方法で段階 的に見積もていくと表3および図9に示す結果となり、さ らにそれを基にして、未知の相互作用の予測を可能にする ことが確認された。

FLVの併用で引き起こされる相互作用の予測(Ai, overall 法)

以下にFLV (100 mg QD)の $A_{i,CYP}$ 値を段階的に見積っ ていった過程と結果について示す。まず最初に、 CYP2C19単独で代謝されるMEP ($f_{m,CYP2C19}$ =1)とFLV との併用の相互作用から、 $A_{i,CYP2C19}$ 値(10)を見積もり、 そうして得られた $A_{i,CYP2C19}$ 値を使って、次にCYP2C19と CYP3A4の両者により代謝されるOME ($f_{m,CYP2C19}$ / $f_{m,CYP3A4}$ =0.92/0.08;CYP2C19のPMのPKから推定) とFLVとの併用の相互作用から、 $A_{i,CYP3A4}$ 値(1.6)を 見積もり、さらにCYP1A2単独で代謝されるCAF ($f_{m,CYP1A2}$ =0.94)とFLVとの併用の相互作用から $A_{i,CY1A2}$ の値(20)を見積れることが確認された。

図9 各種のCYP1A2あるいはCYP2C19基質のvfm.CYP値

次にRAMの $f_{m,CYP}$ 値について、Obachらの*In vitro* 試験 からは $f_{m,CYP1A2}/f_{m,CYP2C19}/f_{m,CYP3A4} = 0.49/0.42/0.083$ $となることが推定されていたが、上記の<math>A_{i,CYP}$ の値および RAMとKTCZ(CYP3A4の強力な阻害剤)あるいはFLCZ (CYP2C19の強力な阻害剤)との相互作用のデータを合 わせ考えて、血中濃度の上昇が最もfitする値として $f_{m,CYP1A2}/f_{m,CYP2C19}/f_{m,CYP3A4} = 0.73/0.2/0.07を見積も$ ることができた(なおObachらの値に比べCYP2C19の寄与率が半減し、その分CYP1A2の寄与率が増える)。またその他のVictimとFLVとの併用による相互作用について $も、上記の<math>A_{i,CYP}$ 値と $f_{m,CYP}$ に関する報告値を使って予測 し、実際と一致する結果を見出すことができた。

すなわち、FLVとの併用による相互作用については、 Victimのf_{m.CYP}がわかればいかなるも相互作用も精度よく 予測できることが確認された。

CYP3A4が関与する相互作用の予測

以上はFLVが阻害剤として働くCYP1A2とCYP2C19が 関与する相互作用の予測に関するものであったが、さらに CYP3A4の阻害により引き起こされる相互作用の予測の可 能性についても検証を行った。すなわちCYP3A4の代表的 な基質であるMDZやTRZに対して、CYP3A4の代表的な 阻害剤あるKTCZやITCZ、さらにはERTなど(12種類) と併用した際に引起される相互作用についても、同様の方 法(A_{i,overall}法)でシミュレーションが可能であるか否か について検討を行った。

MDZおよびTRZをCYP3A4のprobe とする相互作用の予測

CYP3A4により代謝される薬物においては、経口投与後 に、肝での初回通過効果のみならず小腸粘膜に発現してい るCYP3A4により初回通過効果を受け、バイオアベイラビ リティが低下する問題が指摘される。しかしそれが相互作 用の予測にどのように影響するかについては、これまでに 多数の報告がなされているが、¹⁶⁾あまりにもモデル (PBPKモデル)が複雑(入力データが多い)過ぎるため、 間単にその影響を予測できるものにはなっていない。そこ で我々は、できるかぎり簡単にその影響を予測し、 CYP3A4が関与する多くの相互作用の正確な予測につなげ る方法について、主にCYP3A4の代表的probeであるMDZ ($f_{m,CYP3A4}$ / $f_{m,nonCYP}$ = 0.85/0.15)とTRZ ($f_{m,CYP3A4}$ = 1.0) に着目して、検討を行った。

CYP3A4が関与する相互作用については、MDZやTRZ が二つ投与経路(静脈内および経口投与)でprobeとして 使われ、¹⁷⁾各種阻害剤のCYP3A4に対する阻害効果を評 価する臨床試験が多数報告されている。

そこで我々は、それらのデータに着目して、Victimの経 口投与および静脈内投与の違いにより生じる相互作用の大 きさの違いをシミュレーション(二つの異なる投与経路で の同時当てはめ)し、MDZおよびTRZのFgを見積もった ところ、それぞれの値は0.5および0.7となり、またほとん

図10 CYP3A4の代表的基質であるMDZとCYP3A4の阻害剤の併用で見られる相互作用のシミュレーション

Perpetrator	Daily Dose	A _{i,CYP3A4}	CYP3A4 inhibition	MBI
	n x pDff			
ITCZ	1 x 200 mg	11.2	91.1	No
KTCZ	1 x 400 mg	9.60	89.6	No
FLCZ	1 x 200 mg	2.52	60.3	No
CLM	2 x 500 mg	2.64	62.1	Yes
ERT	3 x 500 mg	2.48	59.7	Yes

表4 各種CYP3A4阻害剤のpA_{i,CYP3A4}値

どのCYP3A4阻害剤においては併用時に F_g は1となる結果 [$F_g(+) = 1$]を導くことができた。

したがって、これらの薬物をprobeとするいかなる相互 作用についても、上記の F_g および F_g (+)値を仮定すれば、 $A_{i,overall}$ 法を用いて解析(シミュレーションおよび予測) が可能となり(図10)、結果的には、それぞれの相互作用 における阻害剤(12種類)の $A_{i,CYP3A4}$ を正確に見積もる ことができることがわかった。

その他のCYP3A4の基質でみられた相互作用の予測

さらに消化管での初回通過効果が無視できると予想され た5種類のCYP3A4基質[Victim:LID ($f_{m,CYP3A4} = 0.5$)、 ZOP ($f_{m,CYP3A4} = 0.5$)、TAS ($f_{m,CYP3A4} = 0.3$)、QUN ($f_{m,CYP3A4} = 1.0$)、ALP ($f_{m,CYP3A4} = 1.0$)]とそれらの CYP3A4阻害剤との併用により生じる相互作用についても、 予め別の相互作用の解析から見積もられた $f_{m,CYP3A4}$ 値と 対応する阻害剤のA_{i,CYP3A4}を使って、それらのVictimと 阻害剤の組み合わせにより相互作用を予測できるか否かに ついて調べてみた。

まずこれらの化合物のF_gについてCYP3A4で代謝される 薬物(Victim)は多数挙げられるが、一般的にはF_gは薬 物が消化管粘膜を透過する際の透過クリアランス (CL_{perm})に対する消化管粘膜でのCYP3A4による代謝ク リアランス(CL_{g,int,CYP3A4})の比で決まると考えられる。 したがってその観点に立って、F_gを見積もることは理論 的に可能と思われる。しかしF_gが小さい薬物においては (F_g <0.5)、同時にP_{gp}の基質(CL_{perm}値の低下)でもあ ることが多く、吸収率(F_a)の低下を考慮すると、それ を正確に見積もることは至難の業と思われる(将来の研究 課題)。

しかし薬物が P_{gp} の基質ではない薬物については、 CL_{perm} 値 は TRZ の CL_{perm} 値 に 近 似 で き、ま た CL_{g,int,CYP3A4}の値はCYP3A4に依存した肝クリアランス の値に比例すると考え、TRZのFgとの相対比較により、 その薬物のFg値を大まかに推定することができる。した がって、そのようにして得られたFgの値が十分に大きい 場合(すなわち1に近い場合)、かなりの正確さをもって、 消化管での初回通過効果は無視できると考え、Fg=1の判 定基準に用いた。すなわち上述の5種類のCYP3A4の基質 についてはいずれもFg=1と判定することができた。

その結果、MDZやTRZ以外のCYP3A4基質で $F_g = 1$ と 推定された複数の薬物(QUN、ALP、ZOPなど)の相互 作用についても、図11に示されるように、MDZやTRZの 相互作用から見積もられた阻害剤の $A_{i,CYP3A4}$ 値から正確 に予測できることがわかった。

相互作用の予測における代謝物のCYP阻害あるいは阻害 剤のCYP阻害様式の影響

CYPの阻害剤の中には代謝物も親化合物に勝るとも劣 らないほどの強力な代謝阻害活性を有するものが少なから ず報告されている(ITCZ¹⁸⁾;フロキセチン;ゲムフィブ ロジルなど)。特にITCZ(100 mg QD)に関しては、投与 後の代謝物を含めた競合阻害に基づく代謝阻害活性の時間 変化 $[A_{i, overall}(t)]$ についてのシミュレーション結果が報 告されている。その報告によると $A_{i, overall}$ のトラフ値は約 4となり、投与1時間後に第1のピーク(約10)さらに6 時間後に第2のピーク(約5)になるダイナミックな変化 が見られる。

しかしMDZとITCZ (100 mg QD)の併用による相互作 用を2種類の方法(DynamicおよびStatic 法)によりシ ミュレーションし、両法間で比較した結果、大きな差はな いことがわかった。すなわち、図12に示されるように A_{i,overall}(t)の変化については、A_{i,overall}(t)を平均化して 得られる値(A_{i,overall})を用いてシミュレーションを 行っても阻害剤併用時のVictimの血中濃度時間推移には差 が見られないことが確認された。

図13 CLMの反復投与におけるMBIによる肝および消化管でのCYP3A4活性の 低下の時間推移(パネルA)およびA_{i,overall}の時間推移(パネルB)

また非競合的で時間依存的な阻害活性(mechanism-based inhibition: MBI)を示す阻害剤についても複数 のもの(代表的なものとしてCLMが挙げられる)が報告 されている。またさらにCLMについては、反復投与後の 肝および小腸でのCYP3A4の活性変化に関するシミュレー ション結果が報告されている。¹⁹⁾そこで、その変化に対 応したA_{i,overall}の時間変化についてシミュレーションして みると図13に示すように、定常状態下では、トラフ値に対 するピークとトラフの振幅がわずか1/5程度となる値を示 し、Dynamic効果が無視できる結果が示された。

すなわち、いずれの阻害剤についても、その程度の A_{i,overall}(t)についての変動は相互作用の予測にはほとん ど影響しないこと、すなわちA_{i,overall}を規定することによ り、相互作用を予測できることが確認された。

A_{e,oral}を考慮した相互作用の予測

これまで述べてきたことがらは、肝消失型100%の薬物 (Victim)を前提にした相互作用の予測についての説明で あったが、薬物によれば、少量であっても未変化のまま尿 中に排泄されるものもあり、そのような場合、相互作用の 受け方にどのような違いが生じるかについても検証を行 なった。

例えばキニジン ($f_{m,CYP3A4} = 1$; $A_{e,oral} = 0.35$) とITCZ ($A_{i,CYP3A4} = 12.8$) を併用した際に見られる相互作用 (AUCR = 2.5) について、シミュレーションを行ってみ ると、キニジンの肝での代謝はITCZにより強く阻害を受 け、肝代謝で100% 消失のであればAUCR値が13となると ころが、その1/5程度に低下してしまうことが、 $A_{e,oral}$ を 考慮したシミュレーションにより理論的に示された。

まとめ

RAMとFLVとの併用により生じた異常に大きな相互作 用については、規制当局が推奨するいかなる方法(PBPK を駆使いたDynamic 法)を用いてしても、予測が困難で あった(過小予測となる)。その主な原因として、Wsモデ ルを仮定したこれまでの方法では、RAMのようなFhが小 さな薬物(Victim)においては、相互作用により生じる Fhの増分を無視してしまうことによるものであることが 示された。Tube法がそれを回避する最良の手段であるこ とが示された。

相互作用の予測に際しては、これまでにPBPKモデルを 基本にした方法(多くの*In vitro*試験から得られる特性を In vivoへとbottom upしていく方法)が推奨されてきたが、 その結果、予測はますます複雑化し、むつかしいものに なってきており、世界の製薬研究者の悩みの種となってい るが、本研究により提案された方法(2-Comp A_{i.overall}法) は非常にsimpleなもので、着目する相互作用とその他の薬 物の相互作用との間でのデータの橋渡しを可能とする応用 度の高いものであることが、様々な相互作用(主に CYP1A2 およびCYP3A4が関与する相互作用)のシミュ レーションを通じて示された。

本研究により提案された2-Comp Ai, overall法は今後のこの分野の研究を飛躍的に発展させるものと期待される。

謝辞

著者は薬剤学分野のそれまでの功績と本論文で取り扱っ た薬物間相互作用に関連した研究における成果により、本 年9月11日に日本薬物動態学会から JSSX fellow の称号を 授与されました。推薦頂いた林正弘先生(高崎健康福祉大 学教授・薬学部長)ならびに大野泰雄先生(元国立医薬品 食品衛生試験所・所長)に深謝いたします。

引用文献

- Okuda H, Nishiyama T, Ogura K, Nagayama S, Ikeda K, Yamaguchi S, Nakamura Y, Kawaguchi K, Watabe T. Lethal drug interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. *Drug Metab Dispos.*, 25, 270-273 (1997).
- Guidance for industry drug interaction studies study design, data analysis, implications for dosing, and labeling recommendations February 2012 Clinical Pharmacology *druginfo@fda.hhs.gov* http://www.fda.gov/Drugs/GuidanceCompliance RegulatoryInformation/Guidances/default.htm
- Iga K. Use of three-compartment physiologically based pharmacokinetic modeling to predict hepatic blood levels of fluvoxamine relevant for drug-drug interactions. *J Pharm Sci.*, **104**, 1478-1491 (2015).
- Iga K. Simulation of metabolic drug-drug interactions perpetrated by fluvoxamine using hybridized twocompartment hepatic drug-pool-based tube modeling and estimation of in vivo inhibition constants. *J Pharm Sci.*, **104**, 3565-3577 (2015).

- 5) Iga K. Dynamic and static simulations of fluvoxamineperpetrated drug-drug interactions using multiple cytochrome P450 inhibition modeling, and determination of perpetrator-specific CYP isoform inhibition constants and fractional CYP isoform contributions to victim clearance. *J Pharm Sci.*, **105**, 1307-1317 (2016).
- Iga K, Kiriyama A. Simulations of cytochrome P450 3A4-mediated drug-drug interactions by simple twocompartment model-assisted static method. *J Pharm Sci.*, **106**, 1426-1438 (2017).
- Sateia MJ, Kirby-Long P, Taylor JL. Efficacy and clinical safety of ramelteon: an evidence-based review. *Sleep Med Rev.*, **12**, 319-332 (2008).
- Yao C, Levy RH 2002. Inhibition-based metabolic drugdrug interactions: predictions from in vitro data. J Pharm Sci., 91, 1923-1935 (2002).
- Ito K, Sugiyama Y. Use of clearance concepts and modeling techniques in the prediction of metabolic drug-drug interactions. *Trends Pharmacol Sci.* 31, 351-355 (2010).
- Iga K, Kiriyama A, Honbo A. A multi-sinusoidal compartment model as an alternative to the dispersion model for hepatic extraction kinetic analysis. 同志社女 子大学学術研究年報 57, 105-113 (2006).
- Iga K. Dependency of drug-drug interaction on hepatic extraction ratio of the victim drug. 同志社女子大学学 術研究年報 62, 93-105 (2011).
- Yao C, Kunze KL, Trager WF, Kharasch ED, Levy RH. Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. *Drug Metab Dispos.*, **31**, 565-571 (2003).
- 13) Greenblatt DJ, Venkatakrishnan K, Harmatz JS, Parent SJ, von Moltke LL. Sources of variability in ketoconazole inhibition of human cytochrome P450 3A in vitro. *Xenobiotica.*, **40**, 713-720 (2010).
- 14) Yao HT, Chang YW, Lan SJ, Chen CT, Hsu JT, Yeh TK. The inhibitory effect of polyunsaturated fatty acids on human CYP enzymes. *Life Sci.*, **79**, 2432-2440 (2006).
- 15) Obach RS, Ryder TF. Metabolism of ramelteon in human liver microsomes and correlation with the effect of fluvoxamine on ramelteon pharmacokinetics.

Drug Metab Dispos., 38, 1381-1391 (2010).

- 16) Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. *Drug Metab Dispos.*, **38**, 1147-1158 (2010).
- 17) Tsunoda SM, Velez RL, von Moltke LL, Greenblatt DJ. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. *Clin Pharmacol Ther.*, 66, 461-471 (1999).
- 18) Templeton IE, Thummel KE, Kharasch ED, Kunze KL, Hoffer C, Nelson WL, Isoherranen N. Contribution of itraconazole metabolites to inhibition of CYP3A4 in vivo. *Clin Pharmacol Ther.*, **83**, 77-85 (2008).
- Quinney SK, Zhang X, Lucksiri A, Gorski JC, Li L, Hall SD. Physiologically based pharmacokinetic model of mechanism-based inhibition of CYP3A by clarithromycin. *Drug Metab Dispos.*, **38**, 241-248 (2010).